Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Publication year range
1.
Adv Mater ; : e2401534, 2024 May 25.
Article in Dutch | MEDLINE | ID: mdl-38795019

ABSTRACT

The exploration of 1D magnetism, frequently portrayed as spin chains, constitutes an actively pursued research field that illuminates fundamental principles in many-body problems and applications in magnonics and spintronics. The inherent reduction in dimensionality often leads to robust spin fluctuations, impacting magnetic ordering and resulting in novel magnetic phenomena. Here, structural, magnetic, and optical properties of highly anisotropic 2D van der Waals antiferromagnets that uniquely host spin chains are explored. First-principle calculations reveal that the weakest interaction is interchain, leading to essentially 1D magnetic behavior in each layer. With the additional degree of freedom arising from its anisotropic structure, the structure is engineered by alloying, varying the 1D spin chain lengths using electron beam irradiation, or twisting for localized patterning, and spin textures are calculated, predicting robust stability of the antiferromagnetic ordering. Comparing with other spin chain magnets, these materials are anticipated to bring fresh perspectives on harvesting low-dimensional magnetism.

2.
Nat Commun ; 15(1): 3973, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38729944

ABSTRACT

Ultra-fast single-photon detectors with high current density and operating temperature can benefit space and ground applications, including quantum optical communication systems, lightweight cryogenics for space crafts, and medical use. Here we demonstrate magnesium diboride (MgB2) thin-film superconducting microwires capable of single-photon detection at 1.55 µm optical wavelength. We used helium ions to alter the properties of MgB2, resulting in microwire-based detectors exhibiting single-photon sensitivity across a broad temperature range of up to 20 K, and detection efficiency saturation for 1 µm wide microwires at 3.7 K. Linearity of detection rate vs incident power was preserved up to at least 100 Mcps. Despite the large active area of up to 400 × 400 µm2, the reset time was found to be as low as ~ 1 ns. Our research provides possibilities for breaking the operating temperature limit and maximum single-pixel count rate, expanding the detector area, and raises inquiries about the fundamental mechanisms of single-photon detection in high-critical-temperature superconductors.

3.
Adv Mater ; : e2309360, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38479025

ABSTRACT

The method of salt-assisted vapor-liquid-solid (VLS) growth is introduced to synthesize 1D nanostructures of trichalcogenide van der Waals (vdW) materials, exemplified by niobium trisulfide (NbS3 ). The method uses a unique catalyst consisting of an alloy of Au and an alkali metal halide (NaCl) to enable rapid and directional growth. High yields of two types of NbS3 1D nanostructures, nanowires and nanoribbons, each with sub-ten nanometer diameter, tens of micrometers length, and distinct 1D morphology and growth orientation are demonstrated. Strategies to control the location, size, and morphology of growth, and extend the growth method to synthesize other transition metal trichalcogenides, NbSe3 and TiS3 , as nanowires are demonstrated. Finally, the role of the Au-NaCl alloy catalyst in guiding VLS synthesis is described and the growth mechanism based on the relationships measured between structure (growth orientation, morphology, and dimensions) and growth conditions (catalyst volume and growth time) is discussed. These results introduce opportunities to expand the library of emerging 1D vdW materials to make use of their unique properties through controlled growth at nanoscale dimensions.

4.
Sci Rep ; 14(1): 3163, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38326379

ABSTRACT

Terahertz time-domain spectroscopy (THz-TDS) can be used to map spatial variations in electrical properties such as sheet conductivity, carrier density, and carrier mobility in graphene. Here, we consider wafer-scale graphene grown on germanium by chemical vapor deposition with non-uniformities and small domains due to reconstructions of the substrate during growth. The THz conductivity spectrum matches the predictions of the phenomenological Drude-Smith model for conductors with non-isotropic scattering caused by backscattering from boundaries and line defects. We compare the charge carrier mean free path determined by THz-TDS with the average defect distance assessed by Raman spectroscopy, and the grain boundary dimensions as determined by transmission electron microscopy. The results indicate that even small angle orientation variations below 5° within graphene grains influence the scattering behavior, consistent with significant backscattering contributions from grain boundaries.

5.
Nat Nanotechnol ; 14(4): 340-346, 2019 04.
Article in English | MEDLINE | ID: mdl-30778216

ABSTRACT

Two-dimensional materials such as graphene allow direct access to the entirety of atoms constituting the crystal. While this makes shaping by lithography particularly attractive as a tool for band structure engineering through quantum confinement effects, edge disorder and contamination have so far limited progress towards experimental realization. Here, we define a superlattice in graphene encapsulated in hexagonal boron nitride, by etching an array of holes through the heterostructure with minimum feature sizes of 12-15 nm. We observe a magnetotransport regime that is distinctly different from the characteristic Landau fan of graphene, with a sizeable bandgap that can be tuned by a magnetic field. The measurements are accurately described by transport simulations and analytical calculations. Finally, we observe strong indications that the lithographically engineered band structure at the main Dirac point is cloned to a satellite peak that appears due to moiré interactions between the graphene and the encapsulating material.

6.
Sci Rep ; 8(1): 6381, 2018 04 23.
Article in English | MEDLINE | ID: mdl-29686410

ABSTRACT

The pace of two-dimensional materials (2DM) research has been greatly accelerated by the ability to identify exfoliated thicknesses down to a monolayer from their optical contrast. Since this process requires time-consuming and error-prone manual assignment to avoid false-positives from image features with similar contrast, efforts towards fast and reliable automated assignments schemes is essential. We show that by modelling the expected 2DM contrast in digitally captured images, we can automatically identify candidate regions of 2DM. More importantly, we show a computationally-light machine vision strategy for eliminating false-positives from this set of 2DM candidates through the combined use of binary thresholding, opening and closing filters, and shape-analysis from edge detection. Calculation of data pyramids for arbitrarily high-resolution optical coverage maps of two-dimensional materials produced in this way allows the real-time presentation and processing of this image data in a zoomable interface, enabling large datasets to be explored and analysed with ease. The result is that a standard optical microscope with CCD camera can be used as an analysis tool able to accurately determine the coverage, residue/contamination concentration, and layer number for a wide range of presented 2DMs.

7.
Nat Commun ; 9(1): 659, 2018 02 13.
Article in English | MEDLINE | ID: mdl-29440635

ABSTRACT

Conductance quantization is the quintessential feature of electronic transport in non-interacting mesoscopic systems. This phenomenon is observed in quasi one-dimensional conductors at zero magnetic field B, and the formation of edge states at finite magnetic fields results in wider conductance plateaus within the quantum Hall regime. Electrostatic interactions can change this picture qualitatively. At finite B, screening mechanisms in narrow, gated ballistic conductors are predicted to give rise to an increase in conductance and a suppression of quantization due to the appearance of additional conduction channels. Despite being a universal effect, this regime has proven experimentally elusive because of difficulties in realizing one-dimensional systems with sufficiently hard-walled, disorder-free confinement. Here, we experimentally demonstrate the suppression of conductance quantization within the quantum Hall regime for graphene nanoconstrictions with low edge roughness. Our findings may have profound impact on fundamental studies of quantum transport in finite-size, two-dimensional crystals with low disorder.

SELECTION OF CITATIONS
SEARCH DETAIL
...