Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharmacol Exp Ther ; 345(3): 404-18, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23516330

ABSTRACT

Parathyroid hormone (PTH) and parathyroid hormone-related peptide (PTHrP), acting through the osteoblast PTH1 receptor (PTH1R), play important roles in bone remodeling. Intermittent administration of PTH(1-34) (teriparatide) leads to bone formation, whereas continuous administration paradoxically leads to bone resorption. Activation of PTH1R promotes regulation of multiple signaling pathways, including G(s)/cAMP/protein kinase A, G(q)/calcium/protein kinase C, ß-arrestin recruitment, and extracellular signal-related kinase (ERK)1/2 phosphorylation, as well as receptor internalization, but their role in promoting anabolic and catabolic actions of PTH(1-34) are unclear. In the present investigation, a collection of PTH(1-34) and PTHrP(1-34) peptide analogs were evaluated in orthogonal human PTH1R (hPTH1R) functional assays capturing G(s)- and G(q)-signaling, ß-arrestin recruitment, ERK1/2 phosphorylation, and receptor internalization to further define the patterns of PTH1R signaling that they stimulate and further establish peptide domains contributing to agonist activity. Results indicate that both N- and C-terminal domains of PTH and PTHrP are critical for activation of signaling pathways. However, modifications of both regions lead to more substantial decreases in agonist potency and efficacy to stimulate G(q)-signaling, ß-arrestin recruitment, ERK1/2 phosphorylation, and receptor internalization than to stimulate G(s)-signaling. The substantial contribution of the peptide C-terminal domain in activation of hPTH1R signaling suggests a role in positioning of the peptide N-terminal region into the receptor J-domain. Several PTH and PTHrP peptides evaluated in this study promote different patterns of biased agonist signaling and may serve as useful tools to further elucidate therapeutically relevant PTH1R signaling in osteoblasts. With a better understanding of therapeutically relevant signaling, novel biased peptides with desired signaling could be designed for safer and more effective treatment of osteoporosis.


Subject(s)
Parathyroid Hormone/pharmacology , Peptide Fragments/pharmacology , Receptor, Parathyroid Hormone, Type 2/agonists , Receptor, Parathyroid Hormone, Type 2/physiology , Signal Transduction/physiology , Algorithms , Animals , Arrestin/physiology , Bone Density Conservation Agents/pharmacology , CHO Cells , Cricetinae , Cricetulus , Cyclic AMP/metabolism , Drug Design , GTP-Binding Protein alpha Subunits, Gq-G11/physiology , GTP-Binding Protein alpha Subunits, Gs/physiology , Humans , Inositol Phosphates/metabolism , MAP Kinase Signaling System/physiology , Parathyroid Hormone/chemistry , Parathyroid Hormone-Related Protein/pharmacology , Peptide Fragments/chemistry , Phosphorylation , Receptor, Parathyroid Hormone, Type 2/antagonists & inhibitors
2.
J Pharmacol Exp Ther ; 332(1): 281-90, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19841476

ABSTRACT

5-Hydroxytryptamine (5-HT)(2A) receptor inverse agonists are promising therapeutic agents for the treatment of sleep maintenance insomnias. Among these agents is nelotanserin, a potent, selective 5-HT(2A) inverse agonist. Both radioligand binding and functional inositol phosphate accumulation assays suggest that nelotanserin has low nanomolar potency on the 5-HT(2A) receptor with at least 30- and 5000-fold selectivity compared with 5-HT(2C) and 5-HT(2B) receptors, respectively. Nelotanserin dosed orally prevented (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI; 5-HT(2A) agonist)-induced hypolocomotion, increased sleep consolidation, and increased total nonrapid eye movement sleep time and deep sleep, the latter marked by increases in electroencephalogram (EEG) delta power. These effects on rat sleep were maintained after repeated subchronic dosing. In healthy human volunteers, nelotanserin was rapidly absorbed after oral administration and achieved maximum concentrations 1 h later. EEG effects occurred within 2 to 4 h after dosing, and were consistent with vigilance-lowering. A dose response of nelotanserin was assessed in a postnap insomnia model in healthy subjects. All doses (up to 40 mg) of nelotanserin significantly improved measures of sleep consolidation, including decreases in the number of stage shifts, number of awakenings after sleep onset, microarousal index, and number of sleep bouts, concomitant with increases in sleep bout duration. Nelotanserin did not affect total sleep time, or sleep onset latency. Furthermore, subjective pharmacodynamic effects observed the morning after dosing were minimal and had no functional consequences on psychomotor skills or memory. These studies point to an efficacy and safety profile for nelotanserin that might be ideally suited for the treatment of sleep maintenance insomnias.


Subject(s)
Phenylurea Compounds/therapeutic use , Pyrazoles/therapeutic use , Serotonin 5-HT2 Receptor Agonists , Serotonin Receptor Agonists/therapeutic use , Sleep Initiation and Maintenance Disorders/drug therapy , Sleep/drug effects , Adolescent , Adult , Animals , Cell Line , Cell Membrane/drug effects , Cell Membrane/metabolism , Dose-Response Relationship, Drug , Double-Blind Method , Humans , Ligands , Male , Middle Aged , Motor Activity/drug effects , Phenylurea Compounds/pharmacokinetics , Phenylurea Compounds/pharmacology , Polysomnography , Protein Binding , Pyrazoles/pharmacokinetics , Pyrazoles/pharmacology , Radioligand Assay , Rats , Rats, Sprague-Dawley , Receptor, Serotonin, 5-HT2A/biosynthesis , Recombinant Proteins , Serotonin Receptor Agonists/pharmacokinetics , Serotonin Receptor Agonists/pharmacology , Young Adult
3.
J Pharmacol Exp Ther ; 325(2): 577-87, 2008 May.
Article in English | MEDLINE | ID: mdl-18252809

ABSTRACT

5-Hydroxytryptamine (5-HT)(2C) receptor agonists hold promise for the treatment of obesity. In this study, we describe the in vitro and in vivo characteristics of lorcaserin [(1R)-8-chloro-2,3,4,5-tetrahydro-1-methyl-1H-3 benzazepine], a selective, high affinity 5-HT(2C) full agonist. Lorcaserin bound to human and rat 5-HT(2C) receptors with high affinity (K(i) = 15 +/- 1 nM, 29 +/- 7 nM, respectively), and it was a full agonist for the human 5-HT(2C) receptor in a functional inositol phosphate accumulation assay, with 18- and 104-fold selectivity over 5-HT(2A) and 5-HT(2B) receptors, respectively. Lorcaserin was also highly selective for human 5-HT(2C) over other human 5-HT receptors (5-HT(1A), 5-HT(3), 5-HT(4C), 5-HT5(5A), 5-HT(6), and 5-HT(7)), in addition to a panel of 67 other G protein-coupled receptors and ion channels. Lorcaserin did not compete for binding of ligands to serotonin, dopamine, and norepinephrine transporters, and it did not alter their function in vitro. Behavioral observations indicated that unlike the 5-HT(2A) agonist (+/-)-1-(2,5-dimethoxy-4-phenyl)-2-aminopropane, lorcaserin did not induce behavioral changes indicative of functional 5-HT(2A) agonist activity. Acutely, lorcaserin reduced food intake in rats, an effect that was reversed by pretreatment with the 5-HT(2C)-selective antagonist 6-chloro-5-methyl-1-[6-(2-methylpyridin-3-yloxy)pyridin-3-yl-carbamoyl]indoline (SB242,084) but not the 5-HT(2A) antagonist (R)-(+)-alpha-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenylethyl)]-4-piperidine-methanol (MDL 100,907), demonstrating mediation by the 5-HT(2C) receptor. Chronic daily treatment with lorcaserin to rats maintained on a high fat diet produced dose-dependent reductions in food intake and body weight gain that were maintained during the 4-week study. Upon discontinuation, body weight returned to control levels. These data demonstrate lorcaserin to be a potent, selective, and efficacious agonist of the 5-HT(2C) receptor, with potential for the treatment of obesity.


Subject(s)
Benzazepines/pharmacology , Eating/drug effects , Serotonin 5-HT2 Receptor Agonists , Serotonin Receptor Agonists/pharmacology , Aminopyridines/pharmacology , Animals , Behavior, Animal/drug effects , Benzazepines/blood , Benzazepines/pharmacokinetics , Body Weight/drug effects , Brain/drug effects , Brain/metabolism , Cell Line , Dopamine/metabolism , Fluorobenzenes/pharmacology , Humans , Indoles/pharmacology , Male , Norepinephrine/metabolism , Obesity/drug therapy , Obesity/physiopathology , Piperidines/pharmacology , Rats , Rats, Sprague-Dawley , Receptor, Serotonin, 5-HT2C/physiology , Recombinant Proteins/agonists , Recombinant Proteins/antagonists & inhibitors , Recombinant Proteins/genetics , Serotonin/metabolism , Serotonin 5-HT2 Receptor Antagonists , Serotonin Antagonists/pharmacology , Serotonin Receptor Agonists/blood , Serotonin Receptor Agonists/pharmacokinetics , Transfection
4.
J Med Chem ; 51(2): 305-13, 2008 Jan 24.
Article in English | MEDLINE | ID: mdl-18095642

ABSTRACT

The synthesis and SAR of a novel 3-benzazepine series of 5-HT2C agonists is described. Compound 7d (lorcaserin, APD356) was identified as one of the more potent and selective compounds in vitro (pEC50 values in functional assays measuring [(3)H]phosphoinositol turnover: 5-HT2C = 8.1; 5-HT2A = 6.8; 5-HT2B = 6.1) and was potent in an acute in vivo rat food intake model upon oral administration (ED50 at 6 h = 18 mg/kg). Lorcaserin was further characterized in a single-dose pharmacokinetic study in rat (t1/2 = 3.7 h; F = 86%) and a 28-day model of weight gain in growing Sprague-Dawley rat (8.5% decrease in weight gain observed at 36 mg/kg b.i.d.). Lorcaserin was selected for further evaluation in clinical trials for the treatment of obesity.


Subject(s)
Anti-Obesity Agents/chemical synthesis , Benzazepines/chemical synthesis , Obesity/drug therapy , Serotonin 5-HT2 Receptor Agonists , Animals , Anti-Obesity Agents/pharmacokinetics , Anti-Obesity Agents/pharmacology , Benzazepines/pharmacokinetics , Benzazepines/pharmacology , Cell Line , Eating/drug effects , Humans , Inositol 1,4,5-Trisphosphate/metabolism , Male , Rats , Rats, Sprague-Dawley , Stereoisomerism , Structure-Activity Relationship , Weight Gain/drug effects
5.
Expert Opin Investig Drugs ; 15(3): 257-66, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16503763

ABSTRACT

Activation of central 5-HT2C receptors as a strategy for appetite suppression and weight control is supported by animal pharmacology and human clinical studies. Considerable evidence comes from the weight-loss effects of fenfluramine, a non-selective 5-HT2C agonist. Advances in molecular pharmacology have led to an understanding of the effects of 5-HT2C receptor activation on food intake and satiety, in addition to providing insight into the causes of cardiac valvular insufficiency and pulmonary hypertension associated with the use of fenfluramine. However, clinically validated animal models of drug-induced disease and knowledge of the molecular mechanisms of these safety issues is lacking. For this reason, the development of selective 5-HT2C agonists for the treatment of obesity has remained a challenge.


Subject(s)
Drugs, Investigational/therapeutic use , Obesity/drug therapy , Serotonin 5-HT2 Receptor Agonists , Serotonin Receptor Agonists/therapeutic use , Animals , Anti-Obesity Agents/chemistry , Anti-Obesity Agents/pharmacology , Anti-Obesity Agents/therapeutic use , Clinical Trials as Topic/trends , Drugs, Investigational/chemistry , Drugs, Investigational/pharmacology , Humans , Obesity/metabolism , Receptor, Serotonin, 5-HT2C/metabolism , Serotonin Receptor Agonists/chemistry , Serotonin Receptor Agonists/pharmacology
6.
Bioorg Med Chem Lett ; 15(5): 1467-70, 2005 Mar 01.
Article in English | MEDLINE | ID: mdl-15713408

ABSTRACT

We report on the synthesis, biological evaluation and structure-activity relationships for a series of 3-benzazepine derivatives as 5-HT(2C) receptor agonists. The compounds were evaluated in functional assays measuring [3H] phosphoinositol turnover in HEK-293 cells transiently transfected with h5-HT(2C), h5-HT(2A) or h5-HT(2B) receptors. Several compounds are shown to be potent and selective 5-HT(2C) receptor agonists, which decrease food intake in a rat feeding model.


Subject(s)
Benzazepines , Obesity/drug therapy , Serotonin 5-HT2 Receptor Agonists , Animals , Benzazepines/chemical synthesis , Benzazepines/pharmacology , Benzazepines/therapeutic use , Cell Line , Disease Models, Animal , Drug Evaluation, Preclinical , Eating/drug effects , Humans , Male , Molecular Structure , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL