Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
bioRxiv ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38168181

ABSTRACT

Cadaveric islet and stem cell-derived transplantations hold promise as treatments for type 1 diabetes. To tackle the issue of immunocompatibility, numerous cellular macroencapsulation techniques have been developed that utilize diffusion to transport insulin across an immunoisolating barrier. However, despite several devices progressing to human clinical trials, none have successfully managed to attain physiologic glucose control or insulin independence. Based on empirical evidence, macroencapsulation methods with multilayered, high islet surface density are incompatible with homeostatic, on-demand insulin delivery and physiologic glucose regulation, when reliant solely on diffusion. An additional driving force is essential to overcome the distance limit of diffusion. In this study, we present both theoretical proof and experimental validation that applying pressure at levels comparable to physiological diastolic blood pressure significantly enhances insulin flux across immunoisolation membranes-increasing it by nearly three orders of magnitude. This significant enhancement in transport rate allows for precise, sub-minute regulation of both bolus and basal insulin delivery. By incorporating this technique with a pump-based extravascular system, we demonstrate the ability to rapidly reduce glucose levels in diabetic rodent models, effectively replicating the timescale and therapeutic effect of subcutaneous insulin injection or infusion. This advance provides a potential path towards achieving insulin independence with islet macroencapsulation. One Sentence Summary: Towards improved glucose control, applying sub-minute pressure at physiological levels enhances therapeutic insulin transport from macroencapsulated islets.

2.
Endocrinology ; 163(2)2022 02 01.
Article in English | MEDLINE | ID: mdl-34888628

ABSTRACT

Pathogenic INS gene mutations are causative for mutant INS-gene-induced diabetes of youth (MIDY). We characterize a novel de novo heterozygous INS gene mutation (c.289A>C, p.T97P) that presented in an autoantibody-negative 5-month-old male infant with severe diabetic ketoacidosis. In silico pathogenicity prediction tools provided contradictory interpretations, while structural modeling indicated a deleterious effect on proinsulin folding. Transfection of wildtype and INS p.T97P expression and luciferase reporter constructs demonstrated elevated intracellular mutant proinsulin levels and dramatically impaired proinsulin/insulin and luciferase secretion. Notably, proteasome inhibition partially and selectively rescued INS p.T97P-derived luciferase secretion. Additionally, expression of INS p.T97P caused increased intracellular proinsulin aggregate formation and XBP-1s protein levels, consistent with induction of endoplasmic reticulum stress. We conclude that INS p.T97P is a newly identified pathogenic A-chain variant that is causative for MIDY via disruption of proinsulin folding and processing with induction of the endoplasmic reticulum stress response.


Subject(s)
Diabetic Ketoacidosis/genetics , Insulin/genetics , Mutation, Missense , Diabetes Mellitus , Humans , Infant , Insulin/metabolism , Male , Models, Molecular , Proinsulin/chemistry , Proinsulin/genetics , Proinsulin/metabolism , Protein Folding
3.
Nat Commun ; 11(1): 1730, 2020 04 07.
Article in English | MEDLINE | ID: mdl-32265443

ABSTRACT

Cold stimuli and the subsequent activation of ß-adrenergic receptor (ß-AR) potently stimulate adipose tissue thermogenesis and increase whole-body energy expenditure. However, systemic activation of the ß3-AR pathway inevitably increases blood pressure, a significant risk factor for cardiovascular disease, and, thus, limits its application for the treatment of obesity. To activate fat thermogenesis under tight spatiotemporal control without external stimuli, here, we report an implantable wireless optogenetic device that bypasses the ß-AR pathway and triggers Ca2+ cycling selectively in adipocytes. The wireless optogenetics stimulation in the subcutaneous adipose tissue potently activates Ca2+ cycling fat thermogenesis and increases whole-body energy expenditure without cold stimuli. Significantly, the light-induced fat thermogenesis was sufficient to protect mice from diet-induced body-weight gain. The present study provides the first proof-of-concept that fat-specific cold mimetics via activating non-canonical thermogenesis protect against obesity.


Subject(s)
Adipocytes/metabolism , Adipose Tissue/metabolism , Channelrhodopsins/metabolism , Obesity/therapy , Optogenetics/instrumentation , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Thermogenesis/radiation effects , Adipocytes/radiation effects , Adipose Tissue/radiation effects , Animals , Body Weight/physiology , Body Weight/radiation effects , Calcium/metabolism , Cells, Cultured , Channelrhodopsins/radiation effects , Channelrhodopsins/therapeutic use , Diet , Energy Metabolism/radiation effects , Locomotion , Male , Mice , Mice, Knockout , Obesity/metabolism , Optogenetics/methods , Oxygen Consumption , Receptors, Adrenergic, beta/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics , Thermogenesis/physiology
SELECTION OF CITATIONS
SEARCH DETAIL