Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 21173, 2023 12 01.
Article in English | MEDLINE | ID: mdl-38040893

ABSTRACT

Iron overload negatively affects bone mass and strength. However, the impact of iron excess on osteocytes-important bone cells for mechanotransduction and remodeling-is poorly understood. Herein, we examined the effects of iron exposure on osteocytes during their maturation process. We discovered that iron overload caused apoptosis of osteocytes in early and late stages of differentiation. Notably, the expression of key proteins for iron entry was downregulated during differentiation, suggesting that mature osteocytes were less susceptible to iron toxicity due to limited iron uptake. Furthermore, iron overload also enriched a subpopulation of mature osteocytes, as indicated by increased expression of Dmp1, a gene encoding protein for bone mineralization. These iron-exposed osteocytes expressed high levels of Sost, Tnfsf11 and Fgf23 transcripts. Consistently, we demonstrated that exogenous FGF23 stimulated the formation and survival of osteoclasts, suggesting its regulatory role in bone resorption. In addition, iron overload downregulated the expression of Cx43, a gene encoding gap junction protein in the dendritic processes, and impaired YAP1 nuclear translocation in response to fluid flow in differentiated osteocytes. It can be concluded that iron overload induces cellular adaptation in differentiating osteocytes, resulting in insensitivity to mechanical stimulation and potential disruption of the balance in bone remodeling.


Subject(s)
Bone Resorption , Iron Overload , Humans , Osteocytes/metabolism , Mechanotransduction, Cellular/physiology , Bone Resorption/genetics , Bone Resorption/metabolism , Iron/metabolism , Iron Overload/metabolism , Adaptor Proteins, Signal Transducing/metabolism
3.
RSC Adv ; 13(44): 30575-30585, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37859778

ABSTRACT

Bioceramic materials have a wide range of applications in the biomedical field, such as in the repair of bone defects and dental surgery. Silicate-based bioceramics have attracted biomedical researchers' interest due to their bioactivity and biodegradability. In this study, extended the scope of ZAS utilization in bone tissue engineering by introducing calcium-magnesium-silicate (diopside, CMS) as an interface material aim to develop a machinable bioceramic composite (ZASCMS) by the sol-gel method. The physicochemical characterization, in vitro biological properties and in vivo zebrafish cytotoxicity study of ZAS-based composites as a function of CMS contents, 0, 25, 50, 75 and 100 wt%, were performed. Results showed that the as-prepared ZASCMS possessed porous architecture with well-interconnected pore structure. Results also revealed that the mechanical properties of ZASCMS composite materials were gradually improved with increasing CMS contents. The ZASCMS composites with more than 50 wt% CMS had the highest compressive strength and modulus of 6.78 ± 0.62 MPa and 340.10 ± 16.81 MPa, respectively. Regarding in vitro bioactivities, the composite scaffolds were found to stimulate osteoblast-like UMR-106 cell adhesion, growth, and proliferation. The antibacterial activity of the ZASCMS composite scaffolds was tested against Staphylococcus epidermidis (S. epidermidis) and Escherichia coli (E. coli) also exhibited an antibacterial property. Furthermore, the in vivo studies using embryonic zebrafish were exposed to as-prepared particles (0-500 µg mL-1) and showed that the synthesized ZAS, CMS and ZASCMS composite particles were non-toxic based on the evaluation of survivability, hatching rate and embryonic morphology. In conclusions, our results indicated that the synthesized composite exhibited their biological properties and antibacterial activity, which could well be a promising material with high potential to be applied in orthopaedic and dental tissue engineering.

4.
Biochem Biophys Res Commun ; 659: 105-112, 2023 06 04.
Article in English | MEDLINE | ID: mdl-37060830

ABSTRACT

Fibroblast growth factor (FGF)-23 and calcium-sensing receptor (CaSR) have previously been postulated to be parts of a negative feedback regulation of the intestinal calcium absorption to prevent excessive calcium uptake and its toxicity. However, the underlying mechanism of this feedback regulation remained elusive, especially whether it required transcription of FGF-23. Herein, we induced calcium hyperabsorptive state (CHS) by exposing intestinal epithelium-like Caco-2 monolayer to 30 mM CaCl2 and 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] after which FGF-23 mRNA levels and transepithelial calcium flux were determined. We found that CHS upregulated FGF-23 transcription, which was reverted by CaSR inhibitors (Calhex-231 and NPS2143) but without effect on CaSR transcription. Although 10 nM 1,25(OH)2D3 was capable of enhancing transepithelial calcium flux, the higher-than-normal calcium inundation as in CHS led to a decrease in calcium flux, consistent with an increase in FGF-23 protein expression. Administration of inhibitors (≤10 µM CN585 and cyclosporin A) of calcineurin, a mediator of CaSR action to control transcription and production of its target proteins, was found to partially prevent FGF-23 protein production and the negative effect of CHS on calcium transport, while having no effect on FGF-23 mRNA expression. Direct exposure to FGF-23, but not FGF-23 + PD173074 (FGFR1/3 inhibitor), also completely abolished the 1,25(OH)2D3-enhanced calcium transport in Caco-2 monolayer. Nevertheless, CHS and CaSR inhibitors had no effect on the mRNA levels of calcineurin (PPP3CB) or its targets (i.e., NFATc1-4). In conclusion, exposure to CHS induced by high apical calcium and 1,25(OH)2D3 triggered a negative feedback mechanism to prevent further calcium uptake. CaSR and its downstream mediator, calcineurin, possibly contributed to the regulatory process, in part by enhancing FGF-23 production to inhibit calcium transport. Our study, therefore, corroborated the physiological significance of CaSR-autocrine FGF-23 axis as a local feedback loop for prevention of excessive calcium uptake.


Subject(s)
Calcium , Receptors, Calcium-Sensing , Humans , Caco-2 Cells , Calcineurin , Calcium/metabolism , Calcium, Dietary , Fibroblast Growth Factor-23 , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/metabolism , Receptors, Calcium-Sensing/genetics , Receptors, Calcium-Sensing/metabolism , RNA, Messenger/genetics
5.
Nanomaterials (Basel) ; 13(2)2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36678008

ABSTRACT

Synthesized hydroxyapatite (sHA)-calcium phosphate (CaP) based biomaterials play a vital role and have been widely used in the process of bone regeneration for bone defect repair, due to their similarities to the inorganic components of human bones. However, for bone tissue engineering purpose, the composite components, physical and biological properties, efficacy and safety of sHA still need further improvements. In this work, we synthesized inhomogeneous hydroxyapatite based on biomimetic trace elements (Mg, Fe, Zn, Mn, Cu, Ni, Mo, Sr, Co, BO33-, and CO32-) co-doped into HA (THA) (Ca10-δMδ(PO4)5.5(CO3)0.5(OH)2, M = trace elements) via co-precipitation from an ionic solution. The physical properties, their bioactivities using in vitro osteoblast cells, and in vivo cytotoxicity using zebrafish were studied. By introducing biomimetic trace elements, the as-prepared THA samples showed nanorod (needle-like) structures, having a positively charged surface (6.49 meV), and showing paramagnetic behavior. The bioactivity studies demonstrated that the THA substrate can induce apatite particles to cover its surface and be in contact with surrounding simulated body fluid (SBF). In vitro biological assays revealed that the osteoblast-like UMR-106 cells were well-attached with growth and proliferation on the substrate's surface. Upon differentiation, enhanced ALP (alkaline phosphatase) activity was observed for bone cells on the surface of the THA compared with that on the control substrates (sHA). The in vivo performance in embryonic zebrafish studies showed that the synthesized THA particles are nontoxic based on the measurements of essential parameters such as survivability, hatching rate, and the morphology of the embryo. The mechanism of the ions release profile using digital conductivity measurement revealed that sustained controlled release was successfully achieved. These preliminary results indicated that the synthesized THA could be a promising material for potential practical applications in bone tissue engineering.

6.
PLoS One ; 17(11): e0277096, 2022.
Article in English | MEDLINE | ID: mdl-36399482

ABSTRACT

Vasoactive intestinal peptide (VIP) as a neurocrine factor released by enteric neurons has been postulated to participate in the regulation of transcellular active calcium transport across intestinal epithelium, but the preceding evidence is scant and inconclusive. Herein, transepithelial calcium flux and epithelial electrical parameters were determined by Ussing chamber technique with radioactive tracer in the intestinal epithelium-like Caco-2 monolayer grown on Snapwell. After 3-day culture, Caco-2 cells expressed mRNA of calcium transporters, i.e., TRPV6, calbindin-D9k, PMCA1b and NCX1, and exhibited transepithelial resistance of ~200 Ω cm2, a characteristic of leaky epithelium similar to the small intestine. VIP receptor agonist was able to enhance transcellular calcium flux, whereas VIP receptor antagonist totally abolished calcium fluxes induced by 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]. Since the intestinal cystic fibrosis transmembrane conductance regulator (CFTR) could be activated by VIP and calciotropic hormones, particularly parathyroid hormone, we sought to determine whether CFTR also contributed to the 1,25(OH)2D3-induced calcium transport. A selective CFTR inhibitor (20-200 µM CFTRinh-172) appeared to diminish calcium fluxes as well as transepithelial potential difference and short-circuit current, both of which indicated a decrease in electrogenic ion transport. On the other hand, 50 µM genistein-a molecule that could rapidly activate CFTR-was found to increase calcium transport. Our in silico molecular docking analysis confirmed direct binding of CFTRinh-172 and genistein to CFTR channels. In conclusion, VIP and CFTR apparently contributed to the intestinal calcium transport, especially in the presence of 1,25(OH)2D3, thereby supporting the existence of the neurocrine control of intestinal calcium absorption.


Subject(s)
Calcium , Cystic Fibrosis Transmembrane Conductance Regulator , Humans , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Calcium/metabolism , Vasoactive Intestinal Peptide/pharmacology , Vasoactive Intestinal Peptide/metabolism , Caco-2 Cells , Receptors, Vasoactive Intestinal Peptide/metabolism , Genistein/metabolism , Molecular Docking Simulation , Ion Transport , Intestinal Mucosa/metabolism , Calcium, Dietary/metabolism
7.
PLoS One ; 17(8): e0273267, 2022.
Article in English | MEDLINE | ID: mdl-36040915

ABSTRACT

Although iron is an essential element for hemoglobin and cytochrome synthesis, excessive intestinal iron absorption-as seen in dietary iron supplementation and hereditary disease called thalassemia-could interfere with transepithelial transport of calcium across the intestinal mucosa. The underlying cellular mechanism of iron-induced decrease in intestinal calcium absorption remains elusive, but it has been hypothesized that excess iron probably negates the actions of 1,25-dihydroxyvitamin D [1,25(OH)2D3]. Herein, we exposed the 1,25(OH)2D3-treated epithelium-like Caco-2 monolayer to FeCl3 to demonstrate the inhibitory effect of ferric ion on 1,25(OH)2D3-induced transepithelial calcium transport. We found that a 24-h exposure to FeCl3 on the apical side significantly decreased calcium transport, while increasing the transepithelial resistance (TER) in 1,25(OH)2D3-treated monolayer. The inhibitory action of FeCl3 was considered rapid since 60-min exposure was sufficient to block the 1,25(OH)2D3-induced decrease in TER and increase in calcium flux. Interestingly, FeCl3 did not affect the baseline calcium transport in the absence of 1,25(OH)2D3 treatment. Furthermore, although ascorbic acid is often administered to maximize calcium solubility and to enhance intestinal calcium absorption, it apparently had no effect on calcium transport across the FeCl3- and 1,25(OH)2D3-treated Caco-2 monolayer. In conclusion, apical exposure to ferric ion appeared to negate the 1,25(OH)2D3-stimulated calcium transport across the intestinal epithelium. The present finding has, therefore, provided important information for development of calcium and iron supplement products and treatment protocol for specific groups of individuals, such as thalassemia patients and pregnant women.


Subject(s)
Calcitriol , Calcium , Ascorbic Acid/metabolism , Ascorbic Acid/pharmacology , Caco-2 Cells , Calcitriol/metabolism , Calcitriol/pharmacology , Calcium/metabolism , Calcium, Dietary/metabolism , Electrolytes/metabolism , Female , Humans , Intestinal Absorption , Intestinal Mucosa/metabolism , Iron/metabolism , Iron, Dietary/metabolism , Pregnancy
8.
PLoS One ; 15(5): e0234009, 2020.
Article in English | MEDLINE | ID: mdl-32470038

ABSTRACT

One of the potential contributing factors for iron overload-induced osteoporosis is the iron toxicity on bone forming cells, osteoblasts. In this study, the comparative effects of Fe3+ and Fe2+ on osteoblast differentiation and mineralization were studied in UMR-106 osteoblast cells by using ferric ammonium citrate and ferrous ammonium sulfate as Fe3+ and Fe2+ donors, respectively. Effects of 1,25 dihydroxyvitamin D3 [1,25(OH)2D3] and iron chelator deferiprone on iron uptake ability of osteoblasts were examined, and the potential protective ability of 1,25(OH)2D3, deferiprone and extracellular calcium treatment in osteoblast cell survival under iron overload was also elucidated. The differential effects of Fe3+ and Fe2+ on reactive oxygen species (ROS) production in osteoblasts were also compared. Our results showed that both iron species suppressed alkaline phosphatase gene expression and mineralization with the stronger effects from Fe3+ than Fe2+. 1,25(OH)2D3 significantly increased the intracellular iron but minimally affected osteoblast cell survival under iron overload. Deferiprone markedly decreased intracellular iron in osteoblasts, but it could not recover iron-induced osteoblast cell death. Interestingly, extracellular calcium was able to rescue osteoblasts from iron-induced osteoblast cell death. Additionally, both iron species could induce ROS production and G0/G1 cell cycle arrest in osteoblasts with the stronger effects from Fe3+. In conclusions, Fe3+ and Fe2+ differentially compromised the osteoblast functions and viability, which can be alleviated by an increase in extracellular ionized calcium, but not 1,25(OH)2D3 or iron chelator deferiprone. This study has provided the invaluable information for therapeutic design targeting specific iron specie(s) in iron overload-induced osteoporosis. Moreover, an increase in extracellular calcium could be beneficial for this group of patients.


Subject(s)
Calcitriol/pharmacology , Deferiprone/pharmacology , Extracellular Space/chemistry , Iron Overload/metabolism , Iron/pharmacology , Osteoblasts/cytology , Animals , Biomarkers/metabolism , Calcification, Physiologic/drug effects , Calcium/metabolism , Cell Cycle Checkpoints/drug effects , Cell Death/drug effects , Cell Differentiation/drug effects , Cell Line , Cell Survival/drug effects , Osteoblasts/drug effects , Rats , Reactive Oxygen Species/metabolism
9.
Biochem Biophys Res Commun ; 523(3): 816-821, 2020 03 12.
Article in English | MEDLINE | ID: mdl-31954520

ABSTRACT

Parathyroid hormone (PTH) enhances cystic fibrosis transmembrane conductance regulator (CFTR)-mediated anion secretion by the human intestinal epithelial cell line Caco-2. With the patch-clamp and Ussing chamber techniques, we investigated how PTH stimulates CFTR activity in Caco-2 cells. Cell-attached recordings revealed that PTH stimulated the opening of CFTR-like channels, while impedance analysis demonstrated that PTH increased apical membrane capacitance, a measure of membrane surface area. Using ion substitution experiments, the PTH-stimulated increase in short-circuit current (Isc), a measure of transepithelial ion transport, was demonstrated to be Cl-- and HCO3--dependent. However, the PTH-stimulated increase in Isc was unaffected by the carbonic anhydrase inhibitor acetazolamide, but partially blocked by the intermediate-conductance Ca2+-activated K+ channel (IKCa) inhibitor clotrimazole. TRAM-34, a related IKCa inhibitor, failed to directly inhibit CFTR Cl- channels in cell-free membrane patches, excluding its action on CFTR. In conclusion, PTH enhances CFTR-mediated anion secretion by Caco-2 monolayers by increasing the expression and function of CFTR in the apical membrane and IKCa activity in the basolateral membrane.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Intestinal Mucosa/metabolism , Parathyroid Hormone/metabolism , Anions/metabolism , Caco-2 Cells , Cystic Fibrosis Transmembrane Conductance Regulator/analysis , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Humans , Intestinal Mucosa/cytology , Ion Transport , Up-Regulation
10.
Biomed Phys Eng Express ; 6(5): 055004, 2020 07 13.
Article in English | MEDLINE | ID: mdl-33444235

ABSTRACT

New bioactive scaffolds with improved mechanical properties, biocompatibility and providing structural support for bone tissue are being developed for use in the treatment of bone defects. In this study, we have synthesized bioactive scaffolds consisting of biphasic calcium phosphate (BCP) and zirconia-Mullite (2ZrO2·[3Al2O3 ·2 SiO2] (ZAS)) (BCPZAS) combined with polymers matrix of polycaprolactone (PCL)-alginate (Alg)-chitosan (Chi) (Chi/Alg-PCL) (BCPZAS@Chi/Alg-PCL). The composite material scaffolds were prepared by a blending technique. The microstructure, mechanical, bioactivity and in vitro biological properties with different ratios of BCP to ZAS of 1:0, 3:1, 1:1, 1:3 and 0:1 wt% in polymer matrix were analyzed. Microstructure analysis showed a successful incorporation of the BCPZAS particles with an even distribution of them within the polymer matrix. The mechanical properties were found to gradually decrease with increasing the ratio of ZAS particles in the scaffolds. The highest compressive strength was 42.96 ± 1.01MPa for the 3:1 wt% BCP to ZAS mixing. Bioactivity test, the BCPZAS@Chi/Alg-PCL composite could induce apatite formation in simulate body fluid (SBF). In-vitro experiment using UMR-106 osteoblast-like cells on BCPZAS@Chi/Alg-PCL composite scaffold showed that there is cell attachment to the scaffolds with proliferation. These experimental results demonstrate that the BCPZAS@Chi/Alg-PCL composite especially for the BCP:ZAS at 3:1 wt% could be utilized as a scaffold for bone tissue engineering applications.


Subject(s)
Bone and Bones/cytology , Calcium Phosphates/chemistry , Osteoblasts/cytology , Polymers/chemistry , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Zirconium/chemistry , Aluminum Silicates/chemistry , Animals , Ceramics/chemistry , Rats
11.
Sci Rep ; 9(1): 13963, 2019 Sep 27.
Article in English | MEDLINE | ID: mdl-31562377

ABSTRACT

ß-thalassemia is often associated with hyperglycemia, osteoporosis and increased fracture risk. However, the underlying mechanisms of the thalassemia-associated bone loss remain unclear. It might result from abnormal activities of osteoblasts and osteoclasts, and perhaps prolonged exposure to high extracellular glucose. Herein, we determined the rate of duodenal calcium transport in hemizygous ß-globin knockout thalassemic (BKO) mice. Their bones were collected for primary osteoblast and osteoclast culture. We found that BKO mice had lower calcium absorption than their wild-type (WT) littermates. Osteoblasts from BKO mice showed aberrant expression of osteoblast-specific genes, e.g., Runx2, alkaline phosphatase and osteocalcin, which could be partially restored by 1,25(OH)2D3 treatment. However, the mRNA expression levels of RANK, calcitonin receptor (Calcr), c-Fos, NFATc1, cathepsin K and DMT1 were similar in both BKO and WT groups. Exposure to high extracellular glucose modestly but significantly affected the expression of osteoclast-specific markers in WT osteoclasts with no significant effect on osteoblast-specific genes in WT osteoblasts. Thus, high glucose alone was unable to convert WT bone cells to BKO-like bone cells. In conclusion, the impaired calcium absorption and mutation-related aberrant bone cell function rather than exposure to high blood glucose were likely to be the principal causes of thalassemic bone loss.


Subject(s)
Blood Glucose/metabolism , Calcitriol/pharmacology , Osteoblasts/drug effects , Osteoclasts/drug effects , beta-Globins/genetics , beta-Thalassemia/genetics , Alkaline Phosphatase/genetics , Alkaline Phosphatase/metabolism , Animals , Calcium/metabolism , Disease Models, Animal , Mice , Mice, Knockout , Osteoblasts/metabolism , Osteocalcin/genetics , Osteocalcin/metabolism , Osteoclasts/metabolism , beta-Thalassemia/metabolism
12.
Biomed Mater ; 14(2): 025013, 2019 02 25.
Article in English | MEDLINE | ID: mdl-30690438

ABSTRACT

In the present study, composite scaffolds of chitosan-graft-poly(methyl methacrylate) (Chi-g-PMMA) and mineral ions-loaded hydroxyapatite (mHA) (obtained by the hydrothermal treatment of hydroxyapatite (HA) in a simulated body fluid (SBF) solution (mHA@Chi-g-PMMA)) were prepared by the blending method. The physical properties, bioactivity, biological properties and their capabilities for sustained drug and protein release were studied. Physicochemical analysis showed a successful incorporation of the mineral ions in the HA particles and a good distribution of the mHA within the Chi-g-PMMA polymer matrix. The compressive strength and the Young's modulus were 15.760 ± 0.718 and 658.452 ± 17.020 MPa, respectively. In bioactivity studies, more apatite formation on the surface were seen after immersion in the SBF solution. In vitro growth experiments using UMR-106 osteoblast-like cells on the mHA@Chi-g-PMMA scaffold case showed that the attachment, viability and proliferation of the cells on the scaffolds had improved after 7 d of immersion. The in vitro release of two compounds (the cancer drug, doxorubicin (DOX)) and bovine serum albumin (BSA)), which had been attached to separate mHA@Chi-g-PMMA scaffolds, were studied to determine their suitability as drug delivery vehicles. It was found that the sustained release of DOX was 73.95% and of BSA was 57.27% after 25 h of incubation. These experimental results demonstrated that the mHA@Chi-g-PMMA composite can be utilized as a scaffold for bone cells ingrowth and also be used for drug delivery during the bone repairing.


Subject(s)
Bone and Bones/physiology , Chitosan/chemistry , Hydroxyapatites/chemistry , Polymethyl Methacrylate/chemistry , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Biocompatible Materials/chemistry , Cell Proliferation , Cell Survival , Compressive Strength , Doxorubicin/chemistry , Drug Delivery Systems , Durapatite/chemistry , Humans , Ions/chemistry , Microscopy, Electron, Scanning , Osteoblasts/metabolism , Polymers/chemistry , Porosity , Pressure , Spectroscopy, Fourier Transform Infrared
13.
Arch Biochem Biophys ; 657: 15-22, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30217510

ABSTRACT

Long-term high-calcium intake and intestinal calcium hyperabsorption are hazardous to the body. It is hypothesized that enterocytes possess mechanisms for preventing superfluous calcium absorption, including secretion of negative regulators of calcium absorption and utilization of calcium-sensing receptor (CaSR) to detect luminal calcium. Herein, Caco-2 monolayers were treated with high doses of 1,25(OH)2D3 to induce calcium hyperabsorption or directly exposed to high apical calcium. The expression of counterregulatory factor of calcium absorption, fibroblast growth factor (FGF)-23, was also investigated in the intestine of lactating rats, which physiologically exhibit calcium hyperabsorption. We found that FGF-23 expression was enhanced in all intestinal segments of lactating rats. In Caco-2 monolayers, high apical calcium and 1,25(OH)2D3 induced FGF-23 secretion into culture media. FGF-23 antagonized 1,25(OH)2D3-induced calcium transport and led to a significant, but small, change in paracellular permeability. Furthermore, high-dose 1,25(OH)2D3 upregulated FGF-23 expression, which was prevented by CaSR inhibitors. Activation of apical CaSR by cinacalcet and AC-265347 abolished 1,25(OH)2D3-induced calcium transport in a dose-dependent manner. In conclusion, the intestinal FGF-23 expression was upregulated in conditions with calcium hyperabsorption, presumably to help protect against excessive calcium absorption, while CaSR probably monitored calcium in the lumen and induced FGF-23 production for preventing superfluous calcium uptake.


Subject(s)
Benzothiazoles/pharmacology , Calcitriol/metabolism , Calcium/metabolism , Cinacalcet/pharmacology , Intestinal Absorption/drug effects , Receptors, Calcium-Sensing/agonists , Animals , Caco-2 Cells , Female , Fibroblast Growth Factor-23 , Fibroblast Growth Factors/metabolism , Humans , Intestinal Mucosa/metabolism , Lactation/metabolism , Pregnancy , Rats, Sprague-Dawley , Up-Regulation
14.
Biometals ; 31(5): 873-889, 2018 10.
Article in English | MEDLINE | ID: mdl-30014351

ABSTRACT

The association between iron overload and osteoporosis has been found in many diseases, such as hemochromatosis, ß-thalassemia and sickle cell anemia with multiple blood transfusion. One of the contributing factors is iron toxicity to osteoblasts. Some studies showed the negative effects of iron on osteoblasts; however, the effects of two biological available iron species, i.e., ferric and ferrous, on osteoblasts are elusive. Since most intracellular ionized iron is ferric, osteoblasts was hypothesized to be more responsive to ferric iron. Herein, ferric ammonium citrate (FAC) and ferrous ammonium sulfate (FAS) were used as ferric and ferrous donors. Our results showed that both iron species suppressed cell survival and proliferation. Both also induced osteoblast cell death consistent with the higher levels of cleaved caspase 3 and caspase 7 in osteoblasts, indicating that iron induced osteoblast apoptosis. Iron treatments led to the elevated intracellular iron in osteoblasts as determined by atomic absorption spectrophotometry, thereby leading to a decreased expression of genes for cellular iron import and increased expression of genes for cellular iron export. Effects of FAC and FAS on osteoblast differentiation were determined by the activity of alkaline phosphatase (ALP). The lower ALP activity from osteoblast with iron exposure was found. In addition, ferric and ferrous differentially induced osteoblastic and osteoblast-derived osteoclastogenic gene expression alterations in osteoblast. Even though both iron species had similar effects on osteoblast cell survival and differentiation, the overall effects were markedly stronger in FAC-treated groups, suggesting that osteoblasts were more sensitive to ferric than ferrous.


Subject(s)
Cell Differentiation/drug effects , Ferric Compounds/pharmacology , Ferrous Compounds/pharmacology , Osteoblasts/cytology , Osteoblasts/drug effects , Animals , Cell Line , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Rats , Structure-Activity Relationship
15.
Arch Biochem Biophys ; 640: 10-16, 2018 02 15.
Article in English | MEDLINE | ID: mdl-29317227

ABSTRACT

Overdose of oral calcium supplement and excessive intestinal calcium absorption can contribute pathophysiological conditions, e.g., nephrolithiasis, vascular calcification, dementia, and cardiovascular accident. Since our previous investigation has indicated that fibroblast growth factor (FGF)-23 could abolish the 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]-enhanced calcium absorption, we further hypothesized that FGF-23 produced locally in the enterocytes might be part of a local negative feedback loop to regulate calcium absorption. Herein, 1,25(OH)2D3 was found to enhance the transcellular calcium transport across the epithelium-like Caco-2 monolayer, and this stimulatory effect was diminished by preceding prolonged exposure to high-dose 1,25(OH)2D3 or high concentration of apical ionized calcium. Pretreatment with a neutralizing antibody for FGF-23 prevented this negative feedback regulation of calcium hyperabsorption induced by 1,25(OH)2D3. FGF-23 exposure completely abolished the 1,25(OH)2D3-enhanced calcium transport. Western blot analysis revealed that FGF-23 expression was upregulated in a dose-dependent manner by 1,25(OH)2D3 or apical calcium exposure. Finally, calcium-sensing receptor (CaSR) inhibitors were found to prevent the apical calcium-induced suppression of calcium transport. In conclusion, prolonged exposure to high apical calcium and calcium hyperabsorption were sensed by CaSR, which, in turn, increased FGF-23 expression to suppress calcium transport. This local negative feedback loop can help prevent unnecessary calcium uptake and its detrimental consequences.


Subject(s)
Calcitriol/metabolism , Calcium/metabolism , Fibroblast Growth Factors/biosynthesis , Intestinal Mucosa/metabolism , Caco-2 Cells , Fibroblast Growth Factor-23 , Humans , Intestinal Absorption , Ion Transport , Receptors, Calcium-Sensing/metabolism
16.
Mater Sci Eng C Mater Biol Appl ; 74: 47-54, 2017 May 01.
Article in English | MEDLINE | ID: mdl-28254319

ABSTRACT

Composite materials having mechanical and biological properties similar to those of human bones are needed for bone regeneration and repair. In the present study, composites were made by incorporating bioactive glass (BG) into polycaprolactone (PCL)-polyvinyl alcohol (PVA) (PCLPVA) matrix. Composites with different BG contents of 10, 25 and 50wt% were fabricated by an in-situ blending method. Physicochemical properties measurements found that the composite with 50wt% BG in the PCLPVA organic matrix exhibited the best mechanical properties (compressive strength and compressive young's modulus up to 32.26MPa and 530.91MPa, respectively). We investigated the effects of the BG content on cell adhesion, proliferation and osteogenic activity of UMR-106 cells grown on the scaffolds using in vitro cell culture assay. The composite scaffolds having 25wt% BG showed a significant increase in their cell adhesion capability and a faster cell proliferation. They also exhibited cell adhesion and spreading morphology after only 5days of culturing. For these reasons, we chose to attach the bone morphogenetic protein (BMP)-2 to this composite. The resulting composite (labeled BMP-2-loaded PCLPVABG25) showed significant improvement in the UMR-106 cells adhesion, in the enhancement in osteogenic differentiation and osteoinductivity of this composite.


Subject(s)
Bone Morphogenetic Protein 2/metabolism , Ceramics/chemistry , Polyesters/chemistry , Polyvinyl Alcohol/chemistry , Animals , Biocompatible Materials/chemistry , Bone Morphogenetic Protein 2/chemistry , Cell Adhesion/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Ceramics/pharmacology , Elastic Modulus , Humans , Microscopy, Electron, Scanning , Osteogenesis/drug effects , Porosity , Rats , Spectroscopy, Fourier Transform Infrared
17.
J Biomed Mater Res B Appl Biomater ; 105(7): 1758-1766, 2017 10.
Article in English | MEDLINE | ID: mdl-27184456

ABSTRACT

In the present study, scaffolds for bone tissue engineering applications were made by immersing the inorganic phases of three different calcium phosphate (CaPs) (hydroxyapatite (HA), tricalcium phosphate (TCP), and biphasic calcium phosphate (BCP)) mixing bioactive glass (15Ca:80Si:5P) (BG) with polycaprolactone (PCL) as a binder in an organic phase of chitosan/collagen (ChiCol) matrix (CaPBG@ChiCol). Porous scaffolds were obtained by freeze drying the combinations. The mechanical properties and in vitro growth of rat osteoblast-like UMR-106 cells were investigated. The investigation indicated that the compressive strength was controlled by the types of CaP. The highest compressive modulus of the composites was 479.77 MPa (23.84 MPa for compressive strength) which is for the BCPBG@ChiCol composite. Compressive modulus of 459.01 and 435.95 MPa with compressive strength of 22.73 and 17.89 MPa were observed for the HABG@ChiCol and TCPBG@ChiCol composites, respectively. In vitro cell availability and proliferation tests confirmed the osteoblast attachment and growth on the CaPBG@ChiCol surface. Comparing the scaffolds, cells grown on the BCPBG based composite showed the higher cell density. To test its bioactivity, BCPBG@ChiCol was chosen for MTT and ALP assays on UMR-106 cells. The results indicated that the UMR-106 cells were viable and had higher ALP activity as the culturing times were increased. Therefore, ChiCol-fabricated BCPBG scaffold shows promise for bone regeneration. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1758-1766, 2017.


Subject(s)
Bone and Bones/metabolism , Chitosan , Collagen , Durapatite , Glass/chemistry , Materials Testing , Osteoblasts/metabolism , Tissue Scaffolds/chemistry , Animals , Bone and Bones/cytology , Cell Line , Chitosan/chemistry , Chitosan/pharmacology , Collagen/chemistry , Collagen/pharmacology , Durapatite/chemistry , Durapatite/pharmacology , Osteoblasts/cytology , Polyesters/chemistry , Polyesters/pharmacology , Porosity , Rats
18.
Amino Acids ; 49(4): 725-734, 2017 04.
Article in English | MEDLINE | ID: mdl-27981415

ABSTRACT

Na+/H+ exchanger (NHE)-3 is important for intestinal absorption of nutrients and minerals, including calcium. The previous investigations have shown that the intestinal calcium absorption is also dependent on luminal nutrients, but whether aliphatic amino acids and glucose, which are abundant in the luminal fluid during a meal, similarly enhance calcium transport remains elusive. Herein, we used the in vitro Ussing chamber technique to determine epithelial electrical parameters, i.e., potential difference (PD), short-circuit current (Isc), and transepithelial resistance, as well as 45Ca flux in the rat duodenum directly exposed on the mucosal side to glucose or various amino acids. We found that mucosal glucose exposure led to the enhanced calcium transport, PD, and Isc, all of which were insensitive to NHE3 inhibitor (100 nM tenapanor). In the absence of mucosal glucose, several amino acids (12 mM in the mucosal side), i.e., alanine, isoleucine, leucine, proline, and hydroxyproline, markedly increased the duodenal calcium transport. An inhibitor for NHE3 exposure on the mucosal side completely abolished proline- and leucine-enhanced calcium transport, but not transepithelial transport of both amino acids themselves. In conclusion, glucose and certain amino acids in the mucosal side were potent stimulators of the duodenal calcium absorption, but only amino-acid-enhanced calcium transport was NHE3-dependent.


Subject(s)
Amino Acids/metabolism , Calcium/metabolism , Duodenum/metabolism , Sodium-Hydrogen Exchanger 3/antagonists & inhibitors , Animals , Duodenum/drug effects , Epithelium/metabolism , Female , Glucose/metabolism , Ion Transport , Isoquinolines/pharmacology , Rats , Rats, Sprague-Dawley , Sulfonamides/pharmacology
19.
Mater Sci Eng C Mater Biol Appl ; 62: 183-9, 2016 May.
Article in English | MEDLINE | ID: mdl-26952413

ABSTRACT

The present paper studies the physico-chemical, bioactivity and biological properties of hydroxyapatite (HA) which is derived from fish scale (FS) (FSHA) and compares them with those of synthesized HA (sHA) obtained by co-precipitation from chemical solution as a standard. The analysis shows that the FSHA is composed of flat-plate nanocrystal with a narrow width size of about 15-20 nm and having a range of 100 nm in length and that the calcium phosphate ratio (Ca/P) is 2.01 (Ca-rich CaP). Whereas, synthesized HA consists of sub-micron HA particle having a Ca/P ratio of 1.65. Bioactivity test shows that the FSHA forms more new apatite than does the sHA after being incubated in simulated body fluid (SBF) for 7 days. Moreover, the biocompatibility study shows a higher osteoblast like cell adhesion on the FSHA surface than on the sHA substrate after 3 days of culturing. Our results also show the shape of the osteoblast cells on the FSHA changes from being a rounded shape to being a flattened shape reflecting its spreading behavior on this surface. MTT assay and ALP analysis show significant increases in the proliferation and activity of osteoblasts over the FSHA scaffold after 5 days of culturing as compared to those covering the sHA substrates. These results confirm that the bio-materials derived from fish scale (FSHA) are biologically better than the chemically synthesized HA and have the potential for use as a bone scaffold or as regenerative materials.


Subject(s)
Durapatite/chemistry , Fishes/metabolism , Animal Fins/chemistry , Animal Fins/metabolism , Animals , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Bone Substitutes/chemistry , Bone Substitutes/pharmacology , Cell Adhesion/drug effects , Cell Differentiation/drug effects , Cell Line , Durapatite/chemical synthesis , Materials Testing , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Osteoblasts/cytology , Osteogenesis/drug effects , Particle Size , Rats , Regenerative Medicine , Tissue Engineering , X-Ray Diffraction
20.
Mater Sci Eng C Mater Biol Appl ; 38: 63-72, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24656353

ABSTRACT

In the present study, composite scaffolds made with different weight ratios (0.5:1, 1:1 and 2:1) of bioactive glass (15Ca:80Si:5P) (BG)/polyvinyl alcohol (PVA) (PVABG) and chitosan (Chi)/collagen (Col) (ChiCol) were prepared by three mechanical freeze-thaw followed by freeze-drying to obtain the porous scaffolds. The mechanical properties and the in vitro biocompatibility of the composite scaffolds to simulated body fluid (SBF) and to rat osteoblast-like UMR-106 cells were investigated. The results from the studies indicated that the porosity and compressive strength were controlled by the weight ratio of PVABG:ChiCol. The highest compressive modulus of the composites made was 214.64 MPa which was for the 1:1 weight ratio PVABG:ChiCol. Mineralization study in SBF showed the formation of apatite crystals on the PVABG:ChiCol surface after 7 days of incubation. In vitro cell availability and proliferation tests confirmed the osteoblast attachment and growth on the PVABG:ChiCol surface. MTT and ALP tests on the 1:1 weight ratio PVABG:ChiCol composite indicated that the UMR-106 cells were viable. Alkaline phosphatase activity was found to increase with increasing culturing time. In addition, we showed the potential of PVABG:ChiCol drug delivery through PBS solution studies. 81.14% of BSA loading had been achieved and controlled release for over four weeks was observed. Our results indicated that the PVABG:ChiCol composites, especially the 1:1 weight ratio composite exhibited significantly improved mechanical, mineral deposition, biological properties and controlled release. This made them potential candidates for bone tissue engineering applications.


Subject(s)
Bone and Bones/drug effects , Ceramics/pharmacology , Chitosan/pharmacology , Collagen/pharmacology , Mechanical Phenomena/drug effects , Polyvinyl Alcohol/pharmacology , Serum Albumin, Bovine/metabolism , Tissue Engineering/methods , Adsorption , Alkaline Phosphatase/metabolism , Animals , Calcification, Physiologic/drug effects , Cattle , Cell Differentiation/drug effects , Cell Line , Cell Proliferation/drug effects , Cell Survival/drug effects , Compressive Strength/drug effects , Osteoblasts/cytology , Osteoblasts/drug effects , Osteoblasts/metabolism , Osteogenesis/drug effects , Rats , Spectroscopy, Fourier Transform Infrared , Tissue Scaffolds/chemistry , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...