Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Genomics ; 11: 37-39, 2023.
Article in English | MEDLINE | ID: mdl-37497281

ABSTRACT

Floricoccus penangensis is a Gram-positive coccoid organism that is a member of the lactic acid bacteria. F. penangensis ML061-4 was originally isolated from the surface of an Assam tea leaf, and its genome is herein shown to contain gene clusters predicted to be involved in complex carbohydrate metabolism and biosynthesis of secondary metabolites.

2.
Microorganisms ; 10(3)2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35336103

ABSTRACT

Bacterial cellulose (BC), a biopolymer, is synthesized by BC-producing bacteria. Almost all producing strains are classified in the family Acetobacteraceae. In this study, bacterial strain P285 was isolated from contaminated honey wine in a honey factory in northern Thailand. Based on 16S rRNA gene sequence identification, the strain P285 revealed 99.8% identity with Komagataeibacter maltaceti LMG 1529 T. K. maltaceti P285 produced the maximum BC production at 20-30 °C and an initial media pH of 9.0. The highest BC production in modified mineral salt medium (MSM) was exhibited when glucose (16%, w/v) and yeast extract (3.2%, w/v) were applied as carbon and nitrogen sources, respectively. When sugarcane (8-16%, w/v) or honey (ratio of honey to water = 1: 4) supplemented with yeast extract was used, the BC production was greater. The characterization of BC synthesized by K. maltaceti P285 was undertaken using scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectrometry. Meanwhile, X-ray diffraction results confirmed the presence of crystalline cellulose (2θ = 18.330, 21.390 and 22.640°). The maximum temperature of BC degradation was observed at 314 °C. Tensile properties analysis of hydrated and dried BC showed breaking strength of 1.49 and 0.66 MPa, respectively. These results demonstrated that K. maltaceti P285 has a high potential for BC production especially when grown in high initial media pH. Therefore, the strain would be suitable as an agent to make BC, the value-added product in the related factories.

3.
Front Microbiol ; 12: 789362, 2021.
Article in English | MEDLINE | ID: mdl-34899671

ABSTRACT

Bacillus velezensis ML122-2 is an antimicrobial-producing strain isolated from the leaf of Assam tea or Miang [Camellia sinensis var. assamica (J.W.Mast.) Kitam.]. The cell-free supernatant (CFS) of strain ML122-2 exhibits a broad-spectrum antimicrobial activity against various Gram-positive and Gram-negative bacteria as well as the mold Penicillium expansum. The genome of B. velezensis ML122-2 was sequenced and in silico analysis identified three potential bacteriocin-associated gene clusters, that is, those involved in the production of mersacidin, amylocyclicin, and LCI. Furthermore, six gene clusters exhibiting homology (75-100% DNA sequence identity) to those associated with the secondary metabolites bacilysin, bacillibactin, surfactin, macrolactin H, bacillaene, and plipastatin were identified. Individual antimicrobial activities produced by B. velezensis ML122-2 were purified and characterized by Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry analysis, revealing three antimicrobial peptides with molecular masses corresponding to surfactin, plipastatin, and amylocyclicin. Transcriptional analysis of specific genes associated with mersacidin (mrsA), amylocyclicin (acnA), plipastatin (ppsA), and surfactin (srfAA) production by B. velezensis ML122-2 showed that the first was not transcribed under the conditions tested, while the latter three were consistent with the presence of the associated peptides as determined by mass spectrometry analysis. These findings demonstrate that B. velezensis ML122-2 has the genetic capacity to produce a wide range of antimicrobial activities that may support a specific community structure and highlight the biotechnological properties of Assam tea.

4.
Microorganisms ; 9(1)2020 Dec 24.
Article in English | MEDLINE | ID: mdl-33374175

ABSTRACT

Gamma-aminobutyric acid (GABA), the inhibitory neurotransmitter, can be naturally synthesized by a group of lactic acid bacteria (LAB) which is commonly found in rich carbohydrate materials such as fruits and fermented foods. Thirty-six isolates of GABA-producing LAB were obtained from Thai fermented foods. Among these, Levilactobacillus brevis F064A isolated from Thai fermented sausage displayed high GABA content, 2.85 ± 0.10 mg/mL and could tolerate acidic pH and bile salts indicating a promising probiotic. Mulberry (Morus sp.) is widely grown in Thailand. Many mulberry fruits are left to deteriorate during the high season. To increase its value, mulberry juice was prepared and added to monosodium glutamate (MSG), 2% (w/v) prior to inoculation with 5% (v/v) of L. brevis F064A and incubated at 37 °C for 48 h to obtain the GABA-fermented mulberry juice (GABA-FMJ). The GABA-FMJ obtained had 3.31 ± 0.06 mg/mL of GABA content, 5.58 ± 0.52 mg gallic acid equivalent/mL of antioxidant activity, 234.68 ± 15.53 mg cyanidin-3-glucoside/mL of anthocyanin, an ability to inhibit growth of Bacillus cereus TISTR 687, Salmonella Typhi DMST 22842 and Shigella dysenteriae DMST 1511, and 10.54 ± 0.5 log10 colony-forming units (CFU)/mL of viable L. brevis F064A cell count. This GABA-FMJ was considered as a potential naturally functional food for human of all ages.

5.
Microorganisms ; 8(10)2020 Oct 14.
Article in English | MEDLINE | ID: mdl-33066699

ABSTRACT

Assam tea plants (Camellia sinensis var. assamica) or Miang are found in plantations and forests of Northern Thailand. Leaf fermentation has been performed for centuries, but little information is available about their associated microbial community. One hundred and fifty-seven bacterial isolates were isolated from 62 Assam tea leaf samples collected from 6 provinces of Northern Thailand and classified within the phyla of Firmicutes, Actinobacteria, and Proteobacteria. Phayao and Phrae provinces exhibited the highest and the lowest bacterial diversities, respectively. The bacterial community structural pattern demonstrated significant differences between the west and the east sides. Since some Bacillus spp. have been reported to be involved in fermented Miang, Bacillus spp. isolated in this study were chosen for further elucidation. Bacillus siamensis ML122-2 exhibited a growth inhibitory effect against Staphylococcus aureus ATCC 25923 and MRSA DMST 20625, and the highest survival ability in simulated gastric and intestinal fluids (32.3 and 99.7%, respectively), autoaggregation (93.2%), cell surface hydrophobicity (50.0%), and bacterial adherence with Vero cells (75.8% of the control Lactiplantibacillusplantarum FM03-1). This B. siamensis ML122-2 is a promising probiotic to be used in the food industry and seems to have potential antibacterial properties relevant for the treatment of antibiotic-resistant infections.

6.
Sci Rep ; 9(1): 16561, 2019 11 12.
Article in English | MEDLINE | ID: mdl-31719601

ABSTRACT

Assam tea or Miang is a local name of Camellia sinensis var. assamica in northern Thailand. By the local wisdom, Assam tea leaves are used as the raw material in tea fermentation to produce "Fermented Miang" consumed by people in northern Thailand and the countries nearby. In this study, twenty-eight bacterial isolates were obtained from Assam tea leaf samples collected from Nan province, Thailand. Bacterial isolates were identified within 6 genera including Bacillus, Floricoccus, Kocuria, Lysinibacillus, Micrococcus and Staphylococcus. Among these, the strain ML061-4 shared 100.0 and 99.4% similarity of 16S rRNA and rpoB gene sequence with F. penangensis JCM 31735T, respectively. This is the first discovery of F. penangensis in Thailand. F. penangensis ML061-4 exhibited probiotic characteristics including lactic acid production (9.19 ± 0.10 mg/ml), antibacterial activities (Escherichia coli ATCC 25922 and E. coli O157:H7 DMST 12743), acid and bile salt tolerance (71.1 and 54.9%, respectively), autoaggregation (97.0%), coaggregation (66.0% with E. coli O157:H7), cell surface hydrophobicity (90.0%), bacterial adhesion (82.9% with Lactobacillus plantarum FM03-1), competitive inhibition (17.8% with E. coli O157:H7) and competitive exclusion (34.9% with E. coli O157:H7). Overall, the data suggested that F. penangensis ML061-4 had a great potential to be a probiotic.


Subject(s)
Bacterial Proteins/genetics , Camellia sinensis/microbiology , Genes, Bacterial , Probiotics/pharmacology , Sequence Analysis, DNA , Streptococcaceae/genetics , Bacterial Adhesion/drug effects , Hydrophobic and Hydrophilic Interactions , Lactic Acid/metabolism , Microbial Sensitivity Tests , Phylogeny , Streptococcaceae/drug effects , Streptococcaceae/isolation & purification , Streptococcaceae/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...