Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38168273

ABSTRACT

The PIEZO2 ion channel is critical for transducing light touch into neural signals but is not considered necessary for transducing acute pain in humans. Here, we discovered an exception - a form of mechanical pain evoked by hair pulling. Based on observations in a rare group of individuals with PIEZO2 deficiency syndrome, we demonstrated that hair-pull pain is dependent on PIEZO2 transduction. Studies in control participants showed that hair-pull pain triggered a distinct nocifensive response, including a nociceptive reflex. Observations in rare Aß deafferented individuals and nerve conduction block studies in control participants revealed that hair-pull pain perception is dependent on Aß input. Single-unit axonal recordings revealed that a class of cooling-responsive myelinated nociceptors in human skin is selectively tuned to painful hair-pull stimuli. Further, we pharmacologically mapped these nociceptors to a specific transcriptomic class. Finally, using functional imaging in mice, we demonstrated that in a homologous nociceptor, Piezo2 is necessary for high-sensitivity, robust activation by hair-pull stimuli. Together, we have demonstrated that hair-pulling evokes a distinct type of pain with conserved behavioral, neural, and molecular features across humans and mice.

2.
Front Pain Res (Lausanne) ; 3: 1112614, 2022.
Article in English | MEDLINE | ID: mdl-36703945

ABSTRACT

Introduction: The role of pain as a warning system necessitates a rapid transmission of information from the periphery for the execution of appropriate motor responses. The nociceptive withdrawal reflex (NWR) is a physiological response to protect the limb from a painful stimulus and is often considered an objective measure of spinal nociceptive excitability. The NWR is commonly defined by its latency in the presumed Aδ-fiber range consistent with the canonical view that "fast pain" is signaled by Aδ nociceptors. We recently demonstrated that human skin is equipped with ultrafast (Aß range) nociceptors. Here, we investigated the short-latency component of the reflex and explored the relationship between reflex latency and pain perception. Methods: We revisited our earlier work on NWR measurements in which, following convention, only reflex responses in the presumed Aδ range were considered. In our current analysis, we expanded the time window to search for shorter latency responses and compared those with pain ratings. Results: In both cohorts, we found an abundance of recordings with short-latency reflex responses. In nearly 90% of successful recordings, only single reflex responses (not dual) were seen which allowed us to compare pain ratings based on reflex latencies. We found that shorter latency reflexes were just as painful as those in the conventional latency range. Conclusion: We found a preponderance of short-latency painful reflex responses. Based on this finding, we suggest that short-latency responses must be considered in future studies. Whether these are signaled by the ultrafast nociceptors remains to be determined.

3.
J Rehabil Med ; 53(2): jrm00156, 2021 Feb 23.
Article in English | MEDLINE | ID: mdl-33284352

ABSTRACT

OBJECTIVES: To assess the prevalence of residual trans-lesion connectivity in persons with chronic clinically complete spinal cord injury (discompleteness) by neurophysiological methods. PARTICIPANTS: A total of 23 adults with chronic sensorimotor complete spinal cord injury, identified through regional registries the regional spinal cord registry of Östergötland, Sweden. METHODS: Diagnosis of clinically complete spinal cord injury was verified by standardized neurological examination. Then, a neurophysiological examination was performed, comprising electroneurography, electromyography, sympathetic skin response and evoked potentials (sensory, laser and motor). Based on this assessment, a composite outcome measure, indicating either strong, possible or no evidence of discomplete spinal cord injury, was formed. RESULTS: Strong neurophysiological evidence of discomplete spinal cord injury was found in 17% (4/23) of participants. If also accepting "possible evidence", the discomplete group comprised 39% (9/23). The remaining 61% showed no neurophysiological evidence of discompleteness. However, if also counting reports of subjective sensation elicited during neurophysiological testing in the absence of objective findings, 52% (12/23) showed indication of discomplete spinal cord injury. CONCLUSION: Evidence of discomplete spinal cord injury can be demonstrated using standard neurophysiological techniques in a substantial subset of individuals with clinically complete spinal cord injury. This study adds to the evidence base indicating the potential of various modes of cross-lesional sensorimotor functional restoration in some cases of chronic clinically complete spinal cord injury.


Subject(s)
Electromyography/methods , Neurophysiology/methods , Spinal Cord Injuries/complications , Cross-Sectional Studies , Female , Humans , Male , Prevalence , Spinal Cord Injuries/physiopathology
4.
Brain Commun ; 2(2): fcaa085, 2020.
Article in English | MEDLINE | ID: mdl-32954334

ABSTRACT

In Sweden, a large family with a point mutation in the nerve growth factor-beta gene has previously been identified. The carriers of this mutation have reduced small-fibre density and selective deficits in deep pain and temperature modalities. The clinical findings in this population are described as hereditary sensory and autonomic neuropathy type V. The purpose of the current study was to investigate the prevalence of carpal tunnel syndrome in hereditary sensory and autonomic neuropathy type V based on clinical examinations and electrophysiological measurements. Furthermore, the cross-sectional area of the median nerve at the carpal tunnel inlet was measured with ultrasonography. Out of 52 known individuals heterozygous for the nerve growth factor-beta mutation in Sweden, 23 participated in the current study (12 males, 11 females; mean age 55 years; range 25-86 years). All participants answered a health questionnaire and underwent clinical examination followed by median nerve conduction study in a case-control design, and measurement of the nerve cross-sectional area with ultrasonography. The diagnosis of carpal tunnel syndrome was made based on consensus criteria using patient history and nerve conduction study. The prevalence of carpal tunnel syndrome in the hereditary sensory and autonomic neuropathy group was 35% or 52% depending on whether those individuals who had classic symptoms of carpal tunnel syndrome but negative nerve conduction studies were included or not. Those who had a high likelihood of carpal tunnel syndrome based on classic/probable patient history with positive nerve conduction study had a significantly larger median nerve cross-sectional area than those who had an unlikely patient history with negative nerve conduction study. The prevalence of carpal tunnel syndrome was 10-25 times higher in individuals heterozygous for the nerve growth factor-beta mutation than the general Swedish population. Further studies are needed to better understand the underlying pathophysiological mechanisms.

SELECTION OF CITATIONS
SEARCH DETAIL