Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 121
Filter
1.
Front Physiol ; 15: 1320065, 2024.
Article in English | MEDLINE | ID: mdl-38426206

ABSTRACT

Background: Angiopoietin-like 2 (ANGPTL2) is a pro-inflammatory and pro-oxidant circulating protein that predicts and promotes chronic inflammatory diseases such as atherosclerosis in humans. Transgenic murine models demonstrated the deleterious role of ANGPTL2 in vascular diseases, while deletion of ANGPTL2 was protective. The nature of its role in cardiac tissues is, however, less clear. Indeed, in adult mice knocked down (KD) for ANGPTL2, we recently reported a mild left ventricular (LV) dysfunction originating from a congenital aortic valve stenosis, demonstrating that ANGPTL2 is essential to cardiac development and function. Hypothesis: Because we originally demonstrated that the KD of ANGPTL2 protected vascular endothelial function via an upregulation of arterial NOX4, promoting the beneficial production of dilatory H2O2, we tested the hypothesis that increased cardiac NOX4 could negatively affect cardiac redox and remodeling and contribute to LV dysfunction observed in adult Angptl2-KD mice. Methods and results: Cardiac expression and activity of NOX4 were higher in KD mice, promoting higher levels of cardiac H2O2 when compared to wild-type (WT) mice. Immunofluorescence showed that ANGPTL2 and NOX4 were co-expressed in cardiac cells from WT mice and both proteins co-immunoprecipitated in HEK293 cells, suggesting that ANGPTL2 and NOX4 physically interact. Pressure overload induced by transverse aortic constriction surgery (TAC) promoted LV systolic dysfunction in WT mice but did not further exacerbate the dysfunction in KD mice. Importantly, the severity of LV systolic dysfunction in KD mice (TAC and control SHAM) correlated with cardiac Nox4 expression. Injection of an adeno-associated virus (AAV9) delivering shRNA targeting cardiac Nox4 expression fully reversed LV systolic dysfunction in KD-SHAM mice, demonstrating the causal role of NOX4 in cardiac dysfunction in KD mice. Targeting cardiac Nox4 expression in KD mice also induced an antioxidant response characterized by increased expression of NRF2/KEAP1 and catalase. Conclusion: Together, these data reveal that the absence of ANGPTL2 induces an upregulation of cardiac NOX4 that contributes to oxidative stress and LV dysfunction. By interacting and repressing cardiac NOX4, ANGPTL2 could play a new beneficial role in the maintenance of cardiac redox homeostasis and function.

2.
Cardiovasc Res ; 120(5): 506-518, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38181429

ABSTRACT

AIMS: Cellular senescence is a stress-related or aging response believed to contribute to many cardiac conditions; however, its role in atrial fibrillation (AF) is unknown. Age is the single most important determinant of the risk of AF. The present study was designed to (i) evaluate AF susceptibility and senescence marker expression in rat models of aging and myocardial infarction (MI), (ii) study the effect of reducing senescent-cell burden with senolytic therapy on the atrial substrate in MI rats, and (iii) assess senescence markers in human atrial tissue as a function of age and the presence of AF. METHODS AND RESULTS: AF susceptibility was studied with programmed electrical stimulation. Gene and protein expression was evaluated by immunoblot or immunofluorescence (protein) and digital polymerase chain reaction (PCR) or reverse transcriptase quantitative PCR (messenger RNA). A previously validated senolytic combination, dasatinib and quercetin, (D+Q; or corresponding vehicle) was administered from the time of sham or MI surgery through 28 days later. Experiments were performed blinded to treatment assignment. Burst pacing-induced AF was seen in 100% of aged (18-month old) rats, 87.5% of young MI rats, and 10% of young control (3-month old) rats (P ≤ 0.001 vs. each). Conduction velocity was slower in aged [both left atrium (LA) and right atrium (RA)] and young MI (LA) rats vs. young control rats (P ≤ 0.001 vs. each). Atrial fibrosis was greater in aged (LA and RA) and young MI (LA) vs. young control rats (P < 0.05 for each). Senolytic therapy reduced AF inducibility in MI rats (from 8/9 rats, 89% in MI vehicle, to 0/9 rats, 0% in MI D + Q, P < 0.001) and attenuated LA fibrosis. Double staining suggested that D + Q acts by clearing senescent myofibroblasts and endothelial cells. In human atria, senescence markers were upregulated in older (≥70 years) and long-standing AF patients vs. individuals ≤60 and sinus rhythm controls, respectively. CONCLUSION: Our results point to a potentially significant role of cellular senescence in AF pathophysiology. Modulating cell senescence might provide a basis for novel therapeutic approaches to AF.


Subject(s)
Atrial Fibrillation , Atrial Remodeling , Cellular Senescence , Disease Models, Animal , Fibrosis , Heart Atria , Myocardial Infarction , Animals , Atrial Fibrillation/physiopathology , Atrial Fibrillation/metabolism , Atrial Fibrillation/pathology , Atrial Fibrillation/genetics , Humans , Heart Atria/metabolism , Heart Atria/physiopathology , Heart Atria/pathology , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocardial Infarction/metabolism , Myocardial Infarction/genetics , Male , Quercetin/pharmacology , Senotherapeutics/pharmacology , Age Factors , Female , Aged , Middle Aged , Cardiac Pacing, Artificial
3.
Int J Mol Sci ; 24(20)2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37894719

ABSTRACT

NTPDase1/CD39, the major vascular ectonucleotidase, exerts thrombo-immunoregulatory function by controlling endothelial P2 receptor activation. Despite the well-described release of ATP from endothelial cells, few data are available regarding the potential role of CD39 as a regulator of arterial diameter. We thus investigated the contribution of CD39 in short-term diameter adaptation and long-term arterial remodeling in response to flow using Entpd1-/- male mice. Compared to wild-type littermates, endothelial-dependent relaxation was modified in Entpd1-/- mice. Specifically, the vasorelaxation in response to ATP was potentiated in both conductance (aorta) and small resistance (mesenteric and coronary) arteries. By contrast, the relaxing responses to acetylcholine were supra-normalized in thoracic aortas while decreased in resistance arteries from Entpd1-/- mice. Acute flow-mediated dilation, measured via pressure myography, was dramatically diminished and outward remodeling induced by in vivo chronic increased shear stress was altered in the mesenteric resistance arteries isolated from Entpd1-/- mice compared to wild-types. Finally, changes in vascular reactivity in Entpd1-/- mice were also evidenced by a decrease in the coronary output measured in isolated perfused hearts compared to the wild-type mice. Our results highlight a key regulatory role for purinergic signaling and CD39 in endothelium-dependent short- and long-term arterial diameter adaptation to increased flow.


Subject(s)
Adenosine Triphosphate , Endothelial Cells , Male , Animals , Mice , Antigens, CD/genetics , Apyrase/physiology , Vasodilation , Endothelium, Vascular
4.
Can J Cardiol ; 39(12): 1736-1756, 2023 12.
Article in English | MEDLINE | ID: mdl-37295611

ABSTRACT

Despite the best pharmacologic tools available, cardiovascular diseases (CVDs) remain a major cause of morbidity and mortality in developed countries. After 2 decades of research, new therapeutic targets, such as angiopoietin-like proteins (ANGPTLs), are emerging. ANGPTLs belong to a family of 8 members, from ANGPTL1 to ANGPTL8; they have structural homology with angiopoietins and are secreted in the circulation. ANGPTLs display a multitude of physiological and pathologic functions; they contribute to inflammation, angiogenesis, cell death, senescence, hematopoiesis, and play a role in repair, maintenance, and tissue homeostasis. ANGPTLs-particularly the triad ANGPTL3, 4, and 8-have an established role in lipid metabolism through the regulation of triacylglycerol trafficking according to the nutritional status. Some ANGPTLs also contribute to glucose metabolism. Therefore, dysregulation in ANGPTL expression associated with abnormal circulating levels are linked to a plethora of CVD and metabolic disorders including atherosclerosis, heart diseases, diabetes, but also obesity and cancers. Because ANGPTLs bind to different receptors according to the cell type, antagonists are therapeutically inadequate. Recently, direct inhibitors of ANGPTLs, mainly ANGPTL3, have been developed, and specific monoclonal antibodies and antisense oligonucleotides are currently being tested in clinical trials. The aim of the current review is to provide an up-to-date preclinical and clinical overview on the function of the 8 members of the ANGPTL family in the cardiovascular system, their contribution to CVD, and the therapeutic potential of manipulating some of them.


Subject(s)
Cardiovascular Diseases , Cardiovascular System , Peptide Hormones , Humans , Angiopoietin-like Proteins , Cardiovascular Diseases/prevention & control , Cardiovascular Diseases/drug therapy , Obesity , Biology , Angiopoietins/metabolism , Angiopoietins/therapeutic use , Angiopoietin-Like Protein 3 , Angiopoietin-Like Protein 8 , Peptide Hormones/therapeutic use
5.
Cardiovasc Res ; 119(2): 450-464, 2023 03 31.
Article in English | MEDLINE | ID: mdl-35576489

ABSTRACT

AIMS: The adenylate cyclase type 9 (ADCY9) gene appears to determine atherosclerotic outcomes in patients treated with dalcetrapib. In mice, we recently demonstrated that Adcy9 inactivation potentiates endothelial function and inhibits atherogenesis. The objective of this study was to characterize the contribution of ADCY9 to the regulation of endothelial signalling pathways involved in atherosclerosis. METHODS AND RESULTS: We show that ADCY9 is expressed in the endothelium of mouse aorta and femoral arteries. We demonstrate that ADCY9 inactivation in cultured endothelial cells paradoxically increases cAMP accumulation in response to the adenylate cyclase activators forskolin and vasoactive intestinal peptide (VIP). Reciprocally, ADCY9 overexpression decreases cAMP production. Using mouse femoral artery arteriography, we show that Adcy9 inactivation potentiates VIP-induced endothelial-dependent vasodilation. Moreover, Adcy9 inactivation reduces mouse atheroma endothelial permeability in different vascular beds. ADCY9 overexpression reduces forskolin-induced phosphorylation of Ser157-vasodilator-stimulated phosphoprotein (VASP) and worsens thrombin-induced fall of RAP1 activity, both leading to increased endothelial permeability. ADCY9 inactivation in thrombin-stimulated human coronary artery endothelial cells results in cAMP accumulation, increases p-Ser157-VASP, and inhibits endothelial permeability. MLC2 phosphorylation and actin stress fibre increases in response to thrombin were reduced by ADCY9 inactivation, suggesting actin cytoskeleton regulation. Finally, using the Miles assay, we demonstrate that Adcy9 regulates thrombin-induced endothelial permeability in vivo in normal and atherosclerotic animals. CONCLUSION: Adcy9 is expressed in endothelial cells and regulates local cAMP and endothelial functions including permeability relevant to atherogenesis.


Subject(s)
Adenylyl Cyclases , Atherosclerosis , Animals , Humans , Mice , Adenylyl Cyclases/genetics , Adenylyl Cyclases/metabolism , Atherosclerosis/genetics , Atherosclerosis/prevention & control , Atherosclerosis/metabolism , Colforsin/pharmacology , Colforsin/metabolism , Endothelial Cells/metabolism , Endothelium/metabolism , Thrombin/metabolism , Cyclic AMP/metabolism
7.
Commun Biol ; 5(1): 1277, 2022 11 21.
Article in English | MEDLINE | ID: mdl-36414704

ABSTRACT

Aortic valve (AoV) abnormalities during embryogenesis are a major risk for the development of aortic valve stenosis (AVS) and cardiac events later in life. Here, we identify an unexpected role for Angiopoietin-like 2 (ANGPTL2), a pro-inflammatory protein secreted by senescent cells, in valvulogenesis. At late embryonic stage, mice knocked-down for Angptl2 (Angptl2-KD) exhibit a premature thickening of AoV leaflets associated with a dysregulation of the fine balance between cell apoptosis, senescence and proliferation during AoV remodeling and a decrease in the crucial Notch signalling. These structural and molecular abnormalities lead toward spontaneous AVS with elevated trans-aortic gradient in adult mice of both sexes. Consistently, ANGPTL2 expression is detected in human fetal semilunar valves and associated with pathways involved in cell cycle and senescence. Altogether, these findings suggest that Angptl2 is essential for valvulogenesis, and identify Angptl2-KD mice as an animal model to study spontaneous AVS, a disease with unmet medical need.


Subject(s)
Angiopoietin-Like Protein 2 , Aortic Valve Stenosis , Aortic Valve , Animals , Female , Humans , Male , Mice , Disease Models, Animal , Signal Transduction , Angiopoietin-Like Protein 2/physiology
8.
Can J Cardiol ; 38(3): 303-305, 2022 03.
Article in English | MEDLINE | ID: mdl-34861379
9.
Nat Rev Cardiol ; 19(4): 250-264, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34667279

ABSTRACT

Cellular senescence, classically defined as stable cell cycle arrest, is implicated in biological processes such as embryogenesis, wound healing and ageing. Senescent cells have a complex senescence-associated secretory phenotype (SASP), involving a range of pro-inflammatory factors with important paracrine and autocrine effects on cell and tissue biology. Clinical evidence and experimental studies link cellular senescence, senescent cell accumulation, and the production and release of SASP components with age-related cardiac pathologies such as heart failure, myocardial ischaemia and infarction, and cancer chemotherapy-related cardiotoxicity. However, the precise role of senescent cells in these conditions is unclear and, in some instances, both detrimental and beneficial effects have been reported. The involvement of cellular senescence in other important entities, such as cardiac arrhythmias and remodelling, is poorly understood. In this Review, we summarize the basic biology of cellular senescence and discuss what is known about the role of cellular senescence and the SASP in heart disease. We then consider the various approaches that are being developed to prevent the accumulation of senescent cells and their consequences. Many of these strategies are applicable in vivo and some are being investigated for non-cardiac indications in clinical trials. We end by considering important knowledge gaps, directions for future research and the potential implications for improving the management of patients with heart disease.


Subject(s)
Cellular Senescence , Heart Diseases , Aging/metabolism , Biology , Humans , Senescence-Associated Secretory Phenotype
10.
ESC Heart Fail ; 9(6): 3909-3919, 2022 12.
Article in English | MEDLINE | ID: mdl-36637406

ABSTRACT

AIMS: The hyperglycaemic stress induces the release of inflammatory proteins such as S100A12, one of the endogenous ligands of the receptors for advanced glycation end products (RAGE). Chronic activation of RAGE has multiple deleterious effects in target tissues such as the heart and the vessels by promoting oxidative stress, inflammation by the release of cytokines, macrophages infiltration, and vascular cell migration and proliferation, causing ultimately endothelial cell and cardiomyocyte dysfunction. The aim of our study was to investigate the prognostic value of circulating S100A12 beyond established cardiovascular risk factors (CVRF) for heart failure (HF) and major adverse cardiovascular events (MACE) in a cohort of patients with type 2 diabetes. METHODS AND RESULTS: Serum S100A12 concentrations were measured at baseline in 1345 type 2 diabetes patients (58% men, 64 ± 11 years) recruited in the SURDIAGENE prospective cohort. Endpoints were the occurrence of acute HF requiring hospitalization (HHF) and MACE. We used a proportional hazard model adjusted for established CVRF (age, sex, duration of diabetes, estimated glomerular filtration rate, albumin/creatinine ratio, history of coronary artery disease) and serum S100A12. During the median follow-up of 84 months, 210 (16%) and 505 (38%) patients developed HHF and MACE, respectively. Baseline serum S100A12 concentrations were associated with an increased risk of HHF [hazard ratio (HR) (95% confidence interval) 1.28 (1.01-1.62)], but not MACE [1.04 (0.90-1.20)]. After adjustment for CVRF, S100A12 concentrations remained significantly associated with an increased risk of HHF [1.29 (1.01-1.65)]. In a sub-analysis, patients with high probability of pre-existing HF [N terminal pro brain natriuretic peptide (NT-proBNP) >1000 pg/mL, n = 87] were excluded. In the remaining 1258 patients, the association of serum S100A12 with the risk of HHF tended to be more pronounced [1.39 (1.06-1.83)]. When including the gold standard HF marker NT-proBNP in the model, the prognostic value of S100A12 for HHF did not reach significance. Youden method performed at 7 years for HHF prediction yielded an optimal cut-off for S100A12 concentration of 49 ng/mL (sensitivity 53.3, specificity 52.2). Compared with those with S100A12 ≤ 49 ng/mL, patients with S100A12 > 49 ng/mL had a significantly increased risk of HHF in the univariate model [HR = 1.58 (1.19-2.09), P = 0.0015] but also in the multivariate model [HR = 1.63 (1.23-2.16), P = 0.0008]. After addition of NT-proBNP to the multivariate model, S100A12 > 49 ng/mL remained associated with an increased risk of HHF [HR = 1.42 (1.07-1.90), P = 0.0160]. However, the addition of S100A12 categories on top of multivariate model enriched by NT-pro BNP did not improve the ability of the model to predict HHF (relative integrated discrimination improvement = 1.9%, P = 0.1500). CONCLUSIONS: In patients with type 2 diabetes, increased serum S100A12 concentration is independently associated with risk of HHF, but not with risk of MACE. Compared with NT-proBNP, the potential clinical interest of S100A12 for the prediction of HF events remains limited. However, S100A12 could be a candidate for a multimarker approach for HF risk assessment in diabetic patients.


Subject(s)
Diabetes Mellitus, Type 2 , Heart Failure , Female , Humans , Male , Diabetes Mellitus, Type 2/complications , Heart Failure/complications , Prognosis , Prospective Studies , S100A12 Protein , Middle Aged , Aged
11.
Front Cardiovasc Med ; 8: 741542, 2021.
Article in English | MEDLINE | ID: mdl-34746258

ABSTRACT

Background: Following an acute coronary syndrome, patients display an elevated inflammatory profile, promoted in part by cellular senescence. For patients requiring a coronary artery bypass (CABG) surgery, exposure to the surgical intervention and cardiopulmonary bypass further exacerbate their residual inflammation. Experimental evidence identified quercetin, a natural senolytic drug, as a cardioprotective agent against inflammatory injuries. The Q-CABG study aims to explore the efficacy of quercetin to reduce inflammation, myocardial injury and senescence in patients undergoing CABG following an acute coronary syndrome. Methods: Q-CABG is a phase II, prospectively registered, randomized, double-blind and placebo-controlled clinical trial. Recruited patients awaiting CABG surgery at the Montreal Heart Institute (n = 100) will be randomly assigned in a 1:1 ratio to receive either quercetin supplementation (500 mg twice daily) or placebo, starting 2 days before surgery and until the seventh postoperative day. The primary endpoint examines the effects of quercetin on blood inflammatory cytokines and markers of myocardial injury and senescence in this patient population. Blood samples will be taken at four time points: baseline, postoperative day 1, postoperative day 4 and at hospital discharge, or after a maximum of seven postoperative days. The secondary endpoint is the assessment of endothelial (dys) function by looking at ex vivo vascular reactivity and mRNA expression of endothelial cells from the wall of discarded segments of internal mammary artery. Discussion: The preventive intake of quercetin supplementation may help limit the vigorous inflammatory response triggered by CABG and subsequent postoperative complications in patients suffering from an acute coronary syndrome. In an exploratory way, quercetin supplementation could also improve endothelial function by eliminating senescent vascular endothelial cells. The results of this trial should provide valuable information regarding a novel approach to improve biological, and potentially clinical, outcomes post CABG. Clinical Trial Registration: ClinicalTrials.gov, Identifier NCT04907253.

12.
Int J Mol Sci ; 22(22)2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34830112

ABSTRACT

Cellular senescence is a cell fate primarily induced by DNA damage, characterized by irreversible growth arrest in an attempt to stop the damage. Senescence is a cellular response to a stressor and is observed with aging, but also during wound healing and in embryogenic developmental processes. Senescent cells are metabolically active and secrete a multitude of molecules gathered in the senescence-associated secretory phenotype (SASP). The SASP includes inflammatory cytokines, chemokines, growth factors and metalloproteinases, with autocrine and paracrine activities. Among hundreds of molecules, angiopoietin-like 2 (angptl2) is an interesting, although understudied, SASP member identified in various types of senescent cells. Angptl2 is a circulatory protein, and plasma angptl2 levels increase with age and with various chronic inflammatory diseases such as cancer, atherosclerosis, diabetes, heart failure and a multitude of age-related diseases. In this review, we will examine in which context angptl2 was identified as a SASP factor, describe the experimental evidence showing that angptl2 is a marker of senescence in vitro and in vivo, and discuss the impact of angptl2-related senescence in both physiological and pathological conditions. Future work is needed to demonstrate whether the senescence marker angptl2 is a potential clinical biomarker of age-related diseases.


Subject(s)
Aging/blood , Angiopoietin-Like Protein 2/blood , Senescence-Associated Secretory Phenotype , Aging/pathology , Animals , Biomarkers/blood , Humans
13.
Front Cardiovasc Med ; 8: 658400, 2021.
Article in English | MEDLINE | ID: mdl-33860002

ABSTRACT

The vascular endothelium occupies a catalog of functions that contribute to the homeostasis of the cardiovascular system. It is a physically active barrier between circulating blood and tissue, a regulator of the vascular tone, a biochemical processor and a modulator of coagulation, inflammation, and immunity. Given these essential roles, it comes to no surprise that endothelial dysfunction is prodromal to chronic age-related diseases of the heart and arteries, globally termed cardiovascular diseases (CVD). An example would be ischemic heart disease (IHD), which is the main cause of death from CVD. We have made phenomenal advances in treating CVD, but the aging endothelium, as it senesces, always seems to out-run the benefits of medical and surgical therapies. Remarkably, many epidemiological studies have detected a correlation between a flavonoid-rich diet and a lower incidence of mortality from CVD. Quercetin, a member of the flavonoid class, is a natural compound ubiquitously found in various food sources such as fruits, vegetables, seeds, nuts, and wine. It has been reported to have a wide range of health promoting effects and has gained significant attention over the years. A growing body of evidence suggests quercetin could lower the risk of IHD by mitigating endothelial dysfunction and its risk factors, such as hypertension, atherosclerosis, accumulation of senescent endothelial cells, and endothelial-mesenchymal transition (EndoMT). In this review, we will explore these pathophysiological cascades and their interrelation with endothelial dysfunction. We will then present the scientific evidence to quercetin's anti-atherosclerotic, anti-hypertensive, senolytic, and anti-EndoMT effects. Finally, we will discuss the prospect for its clinical use in alleviating myocardial ischemic injuries in IHD.

15.
Am J Hypertens ; 33(5): 375-390, 2020 04 29.
Article in English | MEDLINE | ID: mdl-32202623

ABSTRACT

The "biomechanical hypothesis" stipulates that with aging, the cumulative mechanical damages to the cerebral microvasculature, magnified by risk factors for vascular diseases, contribute to a breach in cerebral homeostasis producing neuronal losses. In other words, vascular dysfunction affects brain structure and function, and leads to cognitive failure. This is gathered under the term Vascular Cognitive Impairment and Dementia (VCID). One of the main culprits in the occurrence of cognitive decline could be the inevitable rise in arterial pulse pressure due to the age-dependent stiffening of large conductance arteries like the carotids, which in turn, could accentuate the penetration of the pulse pressure wave deeper into the fragile microvasculature of the brain and damage it. In this review, we will discuss how and why the vascular and brain cells communicate and are interdependent, describe the deleterious impact of a vascular dysfunction on brain function in various neurodegenerative diseases and even of psychiatric disorders, and the potential chronic deleterious effects of the pulsatile blood pressure on the cerebral microcirculation. We will also briefly review data from antihypertensive clinical trial aiming at improving or delaying dementia. Finally, we will debate how the aging process, starting early in life, could determine our sensitivity to risk factors for vascular diseases, including cerebral diseases, and the trajectory to VCID.


Subject(s)
Arterial Pressure , Cerebral Arteries/physiopathology , Cerebrovascular Disorders/etiology , Cognition , Cognitive Aging/psychology , Cognitive Dysfunction/etiology , Dementia/etiology , Hypertension/complications , Neurovascular Coupling , Age Factors , Animals , Cerebrovascular Disorders/physiopathology , Cerebrovascular Disorders/psychology , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/psychology , Dementia/physiopathology , Dementia/psychology , Humans , Hypertension/physiopathology , Prognosis , Risk Assessment , Risk Factors , Vascular Remodeling
16.
Diabetologia ; 63(5): 915-923, 2020 05.
Article in English | MEDLINE | ID: mdl-32040670

ABSTRACT

AIMS/HYPOTHESIS: Tenascin-C (TN-C) is an extracellular matrix glycoprotein highly expressed in inflammatory and cardiovascular (CV) diseases. Serum TN-C has not yet been specifically studied in individuals with type 2 diabetes, a condition associated with chronic low-grade inflammation and increased CV disease risk. In this study, we hypothesised that elevated serum TN-C at enrolment in participants with type 2 diabetes would be associated with increased risk of death and major adverse CV events (MACE) during follow-up. METHODS: We used a prospective, monocentric cohort of consecutive type 2 diabetes participants (the SURDIAGENE [SUivi Rénal, DIAbète de type 2 et GENEtique] cohort) with all-cause death as a primary endpoint and MACE (CV death, non-fatal myocardial infarction or stroke) as a secondary endpoint. We used a proportional hazard model after adjustment for traditional risk factors and the relative integrated discrimination improvement (rIDI) to assess the incremental predictive value of TN-C for these risk factors. RESULTS: We monitored 1321 individuals (58% men, mean age 64 ± 11 years) for a median of 89 months. During follow-up, 442 individuals died and 497 had MACE. Multivariate Cox analysis showed that serum TN-C concentrations were associated with an increased risk of death (HR per 1 SD: 1.27 [95% CI 1.17, 1.38]; p < 0.0001) and MACE (HR per 1 SD: 1.23 [95% CI 1.13, 1.34]; p < 0.0001). Using TN-C concentrations on top of traditional risk factors, prediction of the risk of all-cause death (rIDI: 8.2%; p = 0.0006) and MACE (rIDI: 6.7%; p = 0.0014) improved significantly, but modestly. CONCLUSIONS/INTERPRETATION: In individuals with type 2 diabetes, increased serum TN-C concentrations were independently associated with death and MACE. Therefore, including TN-C as a prognostic biomarker could improve risk stratification in these individuals.


Subject(s)
Cardiovascular Diseases/blood , Diabetes Mellitus, Type 2/blood , Tenascin/blood , Aged , Biomarkers/blood , Cardiovascular Diseases/mortality , Cardiovascular Diseases/pathology , Diabetes Mellitus, Type 2/mortality , Diabetes Mellitus, Type 2/pathology , Female , Humans , Male , Middle Aged , Prognosis , Prospective Studies , Risk Factors
17.
Neurobiol Aging ; 88: 11-23, 2020 04.
Article in English | MEDLINE | ID: mdl-31866158

ABSTRACT

Although vascular contributions to dementia and Alzheimer's disease (AD) are increasingly recognized, the potential brain oxygenation disruption associated with AD and whether preventive strategies to maintain tissue oxygenation are beneficial remain largely unknown. This study aimed to examine (1) whether brain oxygenation is compromised by the onset of AD and (2) how voluntary exercise modulates the influence of AD on brain oxygenation. In vivo 2-photon phosphorescence lifetime microscopy was used to investigate local changes of brain tissue oxygenation with the progression of AD and its modulation by exercise in the barrel cortex of awake transgenic AD mice. Our results show that cerebral tissue oxygen partial pressure (PO2) decreased with the onset of AD. Reduced PO2 was associated with the presence of small near-hypoxic areas, an increased oxygen extraction fraction, and reduced blood flow, observations that were all reverted by exercise. AD and age also increased the spatial heterogeneity of brain tissue oxygenation, which was normalized by exercise. Ex vivo staining also showed fewer amyloid-ß (Aß) deposits in the exercise group. Finally, we observed correlations between voluntary running distance and cerebral tissue oxygenation/blood flow, suggesting a dose-response relationship of exercise on the brain. Overall, this study suggests that compromised brain oxygenation is an indicator of the onset of AD, with the emergence of potential deleterious mechanisms associated with hypoxia. Furthermore, voluntary exercise enhanced the neurovascular oxygenation process, potentially offering a means to delay these changes.


Subject(s)
Alzheimer Disease/metabolism , Brain/metabolism , Oxygen Consumption , Oxygen/metabolism , Physical Conditioning, Animal/physiology , Alzheimer Disease/prevention & control , Amyloid beta-Peptides/metabolism , Animals , Brain/blood supply , Cerebrovascular Circulation , Disease Models, Animal , Mice , Mice, Transgenic , Microscopy, Fluorescence, Multiphoton , Partial Pressure
18.
Neurosci Lett ; 715: 134626, 2020 01 10.
Article in English | MEDLINE | ID: mdl-31726177

ABSTRACT

This study measured stimulus-evoked brain tissue oxygenation changes in a mouse model of Alzheimer disease (AD) and further explored the influence of exercise and angiotensin II-induced hypertension on these changes. in vivo two-photon phosphorescence lifetime microscopy was used to investigate local changes in brain tissue oxygenation following whisker stimulation. During rest periods, PO2 values close to the arteriolar wall were lower in the AD groups and the PO2 spatial decay as a function of distance to arteriole was increased by hypertension. During stimulation, tissue PO2 response had a similar spatial dependence across groups. Tissue PO2 response in post-stimulation period was larger in AD groups (e.g., AD6 and ADH6) than in the controls (WT6 and WTH6). After a 3-month voluntary exercise period, some of these changes were reversed in AD mice. This provides novel insight into tissue oxygen delivery and the impact of blood pressure control and exercise on brain tissue oxygenation in AD.


Subject(s)
Alzheimer Disease/blood , Cerebral Cortex/blood supply , Hypertension/blood , Oxygen/blood , Alzheimer Disease/complications , Alzheimer Disease/physiopathology , Angiotensin II , Animals , Cerebral Cortex/physiology , Hypertension/chemically induced , Hypertension/complications , Hypertension/physiopathology , Mice , Mice, Transgenic , Partial Pressure , Physical Conditioning, Animal/physiology
19.
Neurophotonics ; 6(4): 045003, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31673566

ABSTRACT

We explore cortical microvasculature changes during the progression of atherosclerosis using young and old transgenic atherosclerotic (ATX) mice with thinned-skull cranial window. In awake animals, exploiting intrinsic signal optical imaging, Doppler optical coherence tomography, and two-photon microscopy, we investigate how the progression of atherosclerotic disease affects the morphology and function of cortical microvasculature as well as baseline cerebral tissue oxygenation. Results show that aged ATX mice exhibited weaker hemodynamic response in the somatosensory cortex to whisker stimulation and that the diameter of their descending arterioles and associated mean blood flow decreased significantly compared with the young ATX group. Data from two-photon phosphorescence lifetime microscopy indicate that old ATX mice had lower and more heterogeneous partial pressure of oxygen ( PO 2 ) in cortical tissue than young ATX mice. In addition, hypoxic micropockets in cortical tissue were found in old, but not young, ATX mice. Capillary red blood cell (RBC) flux, RBC velocity, RBC velocity heterogeneity, hematocrit, and diameter were also measured using line scans with two-photon fluorescence microscopy. When compared with the young group, RBC flux, velocity, and hematocrit decreased and RBC velocity heterogeneity increased in old ATX mice, presumably due to disturbed blood supply from arterioles that were affected by atherosclerosis. Finally, dilation of capillaries in old ATX mice was observed, which suggests that capillaries play an active role in compensating for an oxygen deficit in brain tissue.

20.
Can J Cardiol ; 35(11): 1567-1575, 2019 11.
Article in English | MEDLINE | ID: mdl-31679626

ABSTRACT

Coronary artery disease (CAD), often related to dyslipidemia, is a major cause of death worldwide, highlighting unmet therapeutic needs. Lipoprotein receptor-related protein 6 (LRP6) is a member of the low-density lipoprotein receptor (LDLR) family composed of structurally related cell surface receptors and acts, in consort with Frizzled receptors, as a coreceptor to mediate the Wnt/ß-catenin signalling pathway. Impaired LRP6 signalling in humans has been associated with multiple cardiovascular risk factors such as elevated serum LDL, triglycerides, and glucose levels. Considerable efforts have been deployed to better understand the underlying mechanisms of LRP6-associated disorders, and the therapeutic targeting of LRP6 has been demonstrated to have positive effects in various animal models of cardiovascular disease. This review presents a synthetic summary highlighting the major roles of LRP6. LRP6 regulates a multitude of cellular mechanisms dependently or independently of the ß-catenin pathway, as LRP6 activates gene transcription, regulates crucial cellular events such as cell cycle or protein synthesis, and even modulates gap junctional coupling in cardiomyocytes and LDLR recycling in hepatocytes. We discuss the potential contribution of LRP6 as a therapeutic target, as LRP6 inhibition limits myocardial fibrosis and promotes cardiac repair in myocardial infarction, limits neointimal formation in carotid injury models, decreases blood pressure in hypertensive animals, and reduces adipogenesis and lipogenesis to prevent hypercholesterolemia and atherosclerosis. These findings from past studies highlight LRP6 as a key player in the development of heart disease and a promising therapeutic target for cardiovascular disease in humans.


Subject(s)
Cardiovascular Diseases/therapy , DNA/genetics , Genetic Therapy/methods , Low Density Lipoprotein Receptor-Related Protein-6/genetics , Mutation , Animals , Cardiovascular Diseases/genetics , Cardiovascular Diseases/metabolism , DNA Mutational Analysis , Humans , Low Density Lipoprotein Receptor-Related Protein-6/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...