Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
J Appl Physiol (1985) ; 134(2): 482-489, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36656980

ABSTRACT

SARS-COV-2, or COVID-19, is a respiratory virus that enters tissues via the angiotensin-converting enzyme 2 (ACE2) receptor and is primed and activated by transmembrane protease, serine 2 (TMPRSS2). An interesting dichotomy exists regarding the preventative/therapeutic effects of exercise on COVID-19 infection and severity. Although exercise training has been shown to increase ACE2 receptor levels (increasing susceptibility to COVID-19 infection), it also lowers cardiovascular risk factors, systemic inflammation, and preserves normal renin-angiotensin system axis equilibrium, which is considered to outweigh any enhanced risk of infection by decreasing disease severity. The goal of this study was to determine the effects of chronic exercise training, sex, and Western diet on ACE2 and TMPRSS2 mRNA levels in preclinical swine models of heart failure. We hypothesized chronic exercise training and male sex would increase ACE2 and TMPRSS2 mRNA levels. A retrospective analysis was conducted in previously completed studies including: 1) sedentary and exercise-trained aortic banded male, intact Yucatan mini-swine (n = 6 or 7/group); 2) ovariectomized and/or aortic banded female, intact Yucatan mini-swine (n = 5-8/group); and 3) lean control or Western diet-fed aortic banded female, intact Ossabaw swine (n = 4 or 5/group). Left ventricle, right ventricle, and coronary vascular tissue were evaluated using qRT-PCR. A multivariable regression analysis was used to determine differences between exercise training, sex, and Western diet. Chronic exercise training did not alter ACE2 or TMPRSS2 level regardless of intensity. ACE2 mRNA was altered in a tissue-specific manner due to sex and Western diet. TMPRSS2 mRNA was altered in a tissue-dependent manner due to sex, Western diet, and pig species. These results highlight differences in ACE2 and TMPRSS2 mRNA regulation in an experimental setting of preclinical heart failure that may provide insight into the risk of cardiovascular complications of SARS-COV-2 infection.NEW & NOTEWORTHY This retrospective analysis evaluated the impact of exercise, sex, and diet on ACE2 and TMPRSS2 mRNA levels in preclinical swine heart failure models. Unlike normal exercise intensities, exercise training of an intensity tolerable to a patient with heart failure had no influence on ACE2 or TMPRSS2 mRNA. In a tissue-specific manner, ACE2 mRNA levels were altered due to sex and Western diet, whereas TMPRSS2 mRNA levels were sensitive to sex, Western diet, and pig species.


Subject(s)
COVID-19 , Heart Failure , Animals , Female , Male , Angiotensin-Converting Enzyme 2 , Diet , Retrospective Studies , RNA, Messenger/genetics , SARS-CoV-2 , Swine , Serine Endopeptidases
2.
Front Mol Neurosci ; 16: 1320879, 2023.
Article in English | MEDLINE | ID: mdl-38163062

ABSTRACT

Diet-induced obesity is implicated in the development of a variety of neurodegenerative disorders. Concurrently, the loss of mitochondrial Complex I protein or function is emerging as a key phenotype across an array of neurodegenerative disorders. Therefore, the objective of this study was to determine if Western diet (WD) feeding in swine [carbohydrate = 40.8% kCal (17.8% of total calories from high fructose corn syrup), protein = 16.2% kcal, fat = 42.9% kCal, and 2% cholesterol] would result in Complex I syndrome pathology. To characterize the effects of WD-induced obesity on brain mitochondria in swine, high resolution respirometry measurements from isolated brain mitochondria, oxidative phosphorylation Complex expression, and indices of oxidative stress and mitochondrial biogenesis were assessed in female Ossabaw swine fed a WD for 6-months. In line with Complex I syndrome, WD feeding severely reduced State 3 Complex I, State 3 Complex I and II, and uncoupled mitochondrial respiration in the hippocampus and prefrontal cortex (PFC). State 3 Complex I mitochondrial respiration in the PFC inversely correlated with serum total cholesterol. WD feeding also significantly reduced protein expression of oxidative phosphorylation Complexes I-V in the PFC. WD feeding significantly increased markers of antioxidant defense and mitochondrial biogenesis in the hippocampi and PFC. These data suggest WD-induced obesity may contribute to Complex I syndrome pathology by increasing oxidative stress, decreasing oxidative phosphorylation Complex protein expression, and reducing brain mitochondrial respiration. Furthermore, these findings provide mechanistic insight into the clinical link between obesity and mitochondrial Complex I related neurodegenerative disorders.

3.
Physiol Genomics ; 54(7): 261-272, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35648460

ABSTRACT

Limited reports exist regarding adeno-associated virus (AAV) biodistribution in swine. This study assessed biodistribution following antegrade intracoronary and intravenous delivery of two self-complementary serotype 9 AAV (AAV9sc) biologics designed to target signaling in the cardiomyocyte considered important for the development of heart failure. Under the control of a cardiomyocyte-specific promoter, AAV9sc.shmAKAP and AAV9sc.RBD express a small hairpin RNA for the perinuclear scaffold protein muscle A-kinase anchoring protein ß (mAKAPß) and an anchoring disruptor peptide for p90 ribosomal S6 kinase type 3 (RSK3), respectively. Quantitative PCR was used to assess viral genome (vg) delivery and transcript expression in Ossabaw and Yorkshire swine tissues. Myocardial viral delivery was 2-5 × 105 vg/µg genomic DNA (gDNA) for both infusion techniques at a dose ∼1013 vg/kg body wt, demonstrating delivery of ∼1-3 viral particles per cardiac diploid genome. Myocardial RNA levels for each expressed transgene were generally proportional to dose and genomic delivery, and comparable with levels for moderately expressed endogenous genes. Despite significant AAV9sc delivery to other tissues, including the liver, neither biologic induced toxic effects as assessed using functional, structural, and circulating cardiac and systemic markers. These results indicate successful targeted delivery of cardiomyocyte-selective viral vectors in swine without negative side effects, an important step in establishing efficacy in a preclinical experimental setting.


Subject(s)
Dependovirus , Myocytes, Cardiac , Animals , Dependovirus/genetics , Gene Transfer Techniques , Genetic Vectors , Infusions, Intravenous , Myocytes, Cardiac/metabolism , Serogroup , Swine , Tissue Distribution
4.
Front Med Technol ; 4: 788264, 2022.
Article in English | MEDLINE | ID: mdl-35252962

ABSTRACT

Left ventricular (LV) catheterization provides LV pressure-volume (P-V) loops and it represents the gold standard for cardiac function monitoring. This technique, however, is invasive and this limits its applicability in clinical and in-home settings. Ballistocardiography (BCG) is a good candidate for non-invasive cardiac monitoring, as it is based on capturing non-invasively the body motion that results from the blood flowing through the cardiovascular system. This work aims at building a mechanistic connection between changes in the BCG signal, changes in the P-V loops and changes in cardiac function. A mechanism-driven model based on cardiovascular physiology has been used as a virtual laboratory to predict how changes in cardiac function will manifest in the BCG waveform. Specifically, model simulations indicate that a decline in LV contractility results in an increase of the relative timing between the ECG and BCG signal and a decrease in BCG amplitude. The predicted changes have subsequently been observed in measurements on three swine serving as pre-clinical models for pre- and post-myocardial infarction conditions. The reproducibility of BCG measurements has been assessed on repeated, consecutive sessions of data acquisitions on three additional swine. Overall, this study provides experimental evidence supporting the utilization of mechanism-driven mathematical modeling as a guide to interpret changes in the BCG signal on the basis of cardiovascular physiology, thereby advancing the BCG technique as an effective method for non-invasive monitoring of cardiac function.

5.
J Pathol ; 254(5): 589-605, 2021 08.
Article in English | MEDLINE | ID: mdl-33999411

ABSTRACT

Duchenne muscular dystrophy (DMD) is a muscle-wasting disease caused by dystrophin deficiency. Vascular dysfunction has been suggested as an underlying pathogenic mechanism in DMD. However, this has not been thoroughly studied in a large animal model. Here we investigated structural and functional changes in the vascular smooth muscle and endothelium of the canine DMD model. The expression of dystrophin and endothelial nitric oxide synthase (eNOS), neuronal NOS (nNOS), and the structure and function of the femoral artery from 15 normal and 16 affected adult dogs were evaluated. Full-length dystrophin was detected in the endothelium and smooth muscle in normal but not affected dog arteries. Normal arteries lacked nNOS but expressed eNOS in the endothelium. NOS activity and eNOS expression were reduced in the endothelium of dystrophic dogs. Dystrophin deficiency resulted in structural remodeling of the artery. In affected dogs, the maximum tension induced by vasoconstrictor phenylephrine and endothelin-1 was significantly reduced. In addition, acetylcholine-mediated vasorelaxation was significantly impaired, whereas exogenous nitric oxide-induced vasorelaxation was significantly enhanced. Our results suggest that dystrophin plays a crucial role in maintaining the structure and function of vascular endothelium and smooth muscle in large mammals. Vascular defects may contribute to DMD pathogenesis. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Dystrophin/deficiency , Endothelium, Vascular/physiopathology , Muscle, Smooth, Vascular/physiopathology , Muscular Dystrophy, Animal/physiopathology , Muscular Dystrophy, Duchenne/physiopathology , Animals , Disease Models, Animal , Dogs
6.
Physiol Genomics ; 53(3): 99-115, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33491589

ABSTRACT

Heart failure (HF) patients with deteriorating right ventricular (RV) structure and function have a nearly twofold increased risk of death compared with those without. Despite the well-established clinical risk, few studies have examined the molecular signature associated with this HF condition. The purpose of this study was to integrate morphological, molecular, and functional data with the transcriptome data set in the RV of a preclinical model of cardiometabolic HF. Ossabaw swine were fed either normal diet without surgery (lean control, n = 5) or Western diet and aortic-banding (WD-AB; n = 4). Postmortem RV weight was increased and positively correlated with lung weight in the WD-AB group compared with CON. Total RNA-seq was performed and gene expression profiles were compared and analyzed using principal component analysis, weighted gene co-expression network analysis, module enrichment analysis, and ingenuity pathway analysis. Gene networks specifically associated with RV hypertrophic remodeling identified a hub gene in MAPK8 (or JNK1) that was associated with the selective induction of the extracellular matrix (ECM) component fibronectin. JNK1 and fibronectin protein were increased in the right coronary artery (RCA) of WD-AB animals and associated with a decrease in matrix metalloproteinase 14 protein, which specifically degrades fibronectin. RCA fibronectin content was correlated with increased vascular stiffness evident as a decreased elastin elastic modulus in WD-AB animals. In conclusion, this study establishes a molecular and transcriptome signature in the RV using Ossabaw swine with cardiometabolic HF. This signature was associated with altered ECM regulation and increased vascular stiffness in the RCA, with selective dysregulation of fibronectin.


Subject(s)
Coronary Vessels/metabolism , Gene Expression Profiling/methods , Heart Failure/genetics , Myocardium/metabolism , Transcriptome , Ventricular Remodeling/genetics , Animals , Diet, Western , Female , Gene Ontology , Gene Regulatory Networks , Heart Failure/metabolism , Heart Ventricles/metabolism , Humans , RNA-Seq/methods , Signal Transduction/genetics , Swine
7.
Am J Physiol Heart Circ Physiol ; 317(5): H1166-H1172, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31603345

ABSTRACT

Insulin modulates vasomotor tone through vasodilator and vasoconstrictor signaling pathways. The purpose of the present work was to determine whether insulin-stimulated vasoconstriction is a pathophysiological phenomenon that can result from a combination of persistent insulin signaling, suppressed phosphatidylinositol-3 kinase (PI3K) activation, and an ensuing relative increase in MAPK/endothelin-1 (ET-1) activity. First, we examined previously published work from our group where we assessed changes in lower-limb blood flow in response to an oral glucose tolerance test (endogenous insulin stimulation) in lean and obese subjects. The new analyses showed that the peak rise in vascular resistance during the postprandial state was greater in obese compared with lean subjects. We next extended on these findings by demonstrating that insulin-induced vasoconstriction in isolated resistance arteries from obese subjects was attenuated with ET-1 receptor antagonism, thus implicating ET-1 signaling in this constriction response. Last, we examined in isolated resistance arteries from pigs the dual roles of persistent insulin signaling and blunted PI3K activation in modulating vasomotor responses to insulin. We found that prolonged insulin stimulation did not alter vasomotor responses to insulin when insulin-signaling pathways remained unrestricted. However, prolonged insulinization along with pharmacological suppression of PI3K activity resulted in insulin-induced vasoconstriction, rather than vasodilation. Notably, such aberrant vascular response was rescued with either MAPK inhibition or ET-1 receptor antagonism. In summary, we demonstrate that insulin-induced vasoconstriction is a pathophysiological phenomenon that can be recapitulated when sustained insulin signaling is coupled with depressed PI3K activation and the concomitant relative increase in MAPK/ET-1 activity.NEW & NOTEWORTHY This study reveals that insulin-induced vasoconstriction is a pathophysiological phenomenon. We also provide evidence that in the setting of persistent insulin signaling, impaired phosphatidylinositol-3 kinase activation appears to be a requisite feature precipitating MAPK/endothelin 1-dependent insulin-induced vasoconstriction.


Subject(s)
Arteries/drug effects , Insulin/pharmacology , Phosphatidylinositol 3-Kinase/metabolism , Vasoconstriction/drug effects , Animals , Arteries/enzymology , Arteries/physiopathology , Endothelin-1/metabolism , Enzyme Activation , Female , Humans , Insulin Resistance , Male , Middle Aged , Mitogen-Activated Protein Kinases/metabolism , Obesity/enzymology , Obesity/physiopathology , Signal Transduction , Sus scrofa
8.
JACC Basic Transl Sci ; 4(3): 404-421, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31312763

ABSTRACT

The development of new treatments for heart failure lack animal models that encompass the increasingly heterogeneous disease profile of this patient population. This report provides evidence supporting the hypothesis that Western Diet-fed, aortic-banded Ossabaw swine display an integrated physiological, morphological, and genetic phenotype evocative of cardio-metabolic heart failure. This new preclinical animal model displays a distinctive constellation of findings that are conceivably useful to extending the understanding of how pre-existing cardio-metabolic syndrome can contribute to developing HF.

9.
J Physiol ; 597(1): 57-69, 2019 01.
Article in English | MEDLINE | ID: mdl-30328623

ABSTRACT

KEY POINTS: It has been postulated that increased blood flow-associated shear stress on endothelial cells is an underlying mechanism by which physical activity enhances insulin-stimulated vasodilatation. This report provides evidence supporting the hypothesis that increased shear stress exerts insulin-sensitizing effects in the vasculature and this evidence is based on experiments in vitro in endothelial cells, ex vivo in isolated arterioles and in vivo in humans. Given the recognition that vascular insulin signalling, and associated enhanced microvascular perfusion, contributes to glycaemic control and maintenance of vascular health, strategies that stimulate an increase in limb blood flow and shear stress have the potential to have profound metabolic and vascular benefits mediated by improvements in endothelial insulin sensitivity. ABSTRACT: The vasodilator actions of insulin contribute to glucose uptake by skeletal muscle, and previous studies have demonstrated that acute and chronic physical activity improves insulin-stimulated vasodilatation and glucose uptake. Because this effect of exercise primarily manifests in vascular beds highly perfused during exercise, it has been postulated that increased blood flow-associated shear stress on endothelial cells is an underlying mechanism by which physical activity enhances insulin-stimulated vasodilatation. Accordingly, herein we tested the hypothesis that increased shear stress, in the absence of muscle contraction, can acutely render the vascular endothelium more insulin-responsive. To test this hypothesis, complementary experiments were conducted using (1) cultured endothelial cells, (2) isolated and pressurized skeletal muscle arterioles from swine, and (3) humans. In cultured endothelial cells, 1 h of increased shear stress from 3 to 20 dynes cm-2 caused a significant shift in insulin signalling characterized by greater activation of eNOS relative to MAPK. Similarly, isolated arterioles exposed to 1 h of intraluminal shear stress (20 dynes cm-2 ) subsequently exhibited greater insulin-induced vasodilatation compared to arterioles kept under no-flow conditions. Finally, we found in humans that increased leg blood flow induced by unilateral limb heating for 1 h subsequently augmented insulin-stimulated popliteal artery blood flow and muscle perfusion. In aggregate, these findings across models (cells, isolated arterioles and humans) support the hypothesis that elevated shear stress causes the vascular endothelium to become more insulin-responsive and thus are consistent with the notion that shear stress may be a principal mechanism by which physical activity enhances insulin-stimulated vasodilatation.


Subject(s)
Arterioles/physiology , Endothelial Cells/physiology , Endothelium, Vascular/physiology , Insulin/physiology , Muscle, Skeletal/physiology , Stress, Mechanical , Adult , Animals , Cells, Cultured , Female , Hot Temperature , Humans , Leg/blood supply , Male , Popliteal Artery/physiology , Regional Blood Flow , Swine , Vasodilation
10.
J Appl Physiol (1985) ; 125(1): 86-96, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29596016

ABSTRACT

Conventional treatments have failed to improve the prognosis of heart failure with preserved ejection fraction (HFpEF) patients. Thus, the purpose of this study was to determine the therapeutic efficacy of chronic interval exercise training (IT) on large-conductance Ca2+-activated K+ (BKCa) channel-mediated coronary vascular function in heart failure. We hypothesized that chronic interval exercise training would attenuate pressure overload-induced impairments to coronary BKCa channel-mediated function. A translational large-animal model with cardiac features of HFpEF was used to test this hypothesis. Specifically, male Yucatan miniswine were divided into three groups ( n = 7/group): control (CON), aortic banded (AB)-heart failure (HF), and AB-interval trained (HF-IT). Coronary blood flow, vascular conductance, and vasodilatory capacity were measured after administration of the BKCa channel agonist NS-1619 both in vivo and in vitro in the left anterior descending coronary artery and isolated coronary arterioles, respectively. Skeletal muscle citrate synthase activity was decreased and left ventricular brain natriuretic peptide levels increased in HF vs. CON and HF-IT animals. A parallel decrease in NS-1619-dependent coronary vasodilatory reserve in vivo and isolated coronary arteriole vasodilatory responsiveness in vitro were observed in HF animals compared with CON, which was prevented in the HF-IT group. Although exercise training prevented BKCa channel-mediated coronary vascular dysfunction, it did not change BKCa channel α-subunit mRNA, protein, or cellular location (i.e., membrane vs. cytoplasm). In conclusion, these results demonstrate the viability of chronic interval exercise training as a therapy for central and peripheral adaptations of experimental heart failure, including BKCa channel-mediated coronary vascular dysfunction. NEW & NOTEWORTHY Conventional treatments have failed to improve the prognosis of heart failure with preserved ejection fraction (HFpEF) patients. Our findings show that chronic interval exercise training can prevent BKCa channel-mediated coronary vascular dysfunction in a translational swine model of chronic pressure overload-induced heart failure with relevance to human HFpEF.


Subject(s)
Aorta/physiopathology , Coronary Vessels/physiopathology , Heart Failure/physiopathology , Heart Ventricles/physiopathology , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/metabolism , Physical Conditioning, Animal/physiology , Swine, Miniature/physiology , Animals , Aorta/metabolism , Cardiomyopathies/metabolism , Cardiomyopathies/physiopathology , Coronary Vessels/metabolism , Heart Failure/metabolism , Heart Ventricles/metabolism , Hemodynamics/physiology , Male , Stroke Volume/physiology , Swine , Swine, Miniature/metabolism , Ventricular Function, Left/physiology
11.
Exp Biol Med (Maywood) ; 242(6): 617-624, 2017 03.
Article in English | MEDLINE | ID: mdl-28114814

ABSTRACT

We examined the effects of metformin, a commonly used antidiabetic drug, on gene expression in multiple arteries. Specifically, transcriptional profiles of feed arteries and second branch order arterioles in the soleus, gastrocnemius, and diaphragm muscles as well as aortic endothelial scrapes were examined from obese insulin-resistant Otsuka Long-Evans Tokushima Fatty rats treated with ( n = 9) or without ( n = 10) metformin from 20 to 32 weeks of age. Metformin-treated rats exhibited a reduction in body weight, adiposity, and HbA1c ( P < 0.05). The greatest number of differentially expressed genes (FDR < 15%) between those treated with and without metformin was found in the red gastrocnemius 2a arterioles (93 genes), followed by the diaphragm 2a arterioles (62 genes), and soleus 2a arterioles (15 genes). We also found that two genes were differentially expressed in aortic endothelial cells (LETMD1 and HMGCS2, both downregulated), one gene in the gastrocnemius feed artery (BLNK, downregulated), and no genes in the soleus and diaphragm feed arteries and white gastrocnemius 2a arterioles. No single gene was altered by metformin across all vessels examined. This study provides evidence that metformin treatment produces distinct gene expression effects throughout the arterial tree in a rat model of obesity and insulin resistance. Genes whose expression was modulated with metformin do not appear to have a clear connection with its known mechanisms of action. These findings support the notion that vascular gene regulation in response to oral pharmacological therapy, such as metformin, is vessel specific. Impact statement This study provides evidence that metformin treatment produces artery-specific gene expression effects. The genes whose expression was modulated with metformin do not appear to have a clear connection with its known mechanisms of action.


Subject(s)
Arteries/drug effects , Gene Expression/drug effects , Hypoglycemic Agents/pharmacology , Metformin/pharmacology , Muscle, Skeletal/blood supply , Obesity/metabolism , Animals , Arteries/metabolism , Insulin Resistance , Male , Rats , Rats, Long-Evans , Rats, Mutant Strains
12.
J Appl Physiol (1985) ; 119(6): 583-603, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26183477

ABSTRACT

Using next-generation, transcriptome-wide RNA sequencing (RNA-Seq) technology we assessed the effects of exercise training on transcriptional profiles in skeletal muscle arterioles isolated from the soleus and gastrocnemius muscles of Otsuka Long Evans Tokushima Fatty (OLETF) rats that underwent an endurance exercise training program (EX; n = 13), interval sprint training program (SPRINT; n = 14), or remained sedentary (Sed; n = 12). We hypothesized that the greatest effects of exercise would be in the gastrocnemius arterioles. Results show that EX caused the largest number of changes in gene expression in the soleus and white gastrocnemius 2a arterioles with little to no changes in the feed arteries. In contrast, SPRINT caused substantial changes in gene expression in the feed arteries. IPA canonical pathway analysis revealed 18 pathways with significant changes in gene expression when analyzed across vessels and revealed that EX induces increased expression of the following genes in all arterioles examined: Shc1, desert hedgehog protein (Dhh), adenylate cyclase 4 (Adcy4), G protein binding protein, alpha (Gnat1), and Bcl2l1 and decreased expression of ubiquitin D (Ubd) and cAMP response element modulator (Crem). EX increased expression of endothelin converting enzyme (Ece1), Hsp90b, Fkbp5, and Cdcl4b in four of five arterioles. SPRINT had effects on expression of Crem, Dhh, Bcl2l1, and Ubd that were similar to EX. SPRINT also increased expression of Nfkbia, Hspa5, Tubb 2a and Tubb 2b, and Fkbp5 in all five arterioles and increased expression of Gnat1 in all but the soleus second-order arterioles. Many contractile and/or structural protein genes were increased by SPRINT in the gastrocnemius feed artery, but the same genes exhibited decreased expression in red gastrocnemius arterioles. We conclude that training-induced changes in arteriolar gene expression patterns differ by muscle fiber type composition and along the arteriolar tree.


Subject(s)
Arterioles/physiopathology , Gene Expression/physiology , Muscle, Skeletal/physiopathology , Obesity/physiopathology , Physical Conditioning, Animal/physiology , Animals , Arterioles/metabolism , Male , Muscle Contraction/physiology , Muscle, Skeletal/metabolism , Obesity/metabolism , Physical Endurance/physiology , Rats , Rats, Inbred OLETF , Signal Transduction/physiology , Transcriptome/physiology
13.
J Appl Physiol (1985) ; 119(6): 604-16, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26183478

ABSTRACT

We employed next-generation, transcriptome-wide RNA sequencing (RNA-Seq) technology to assess the effects of two different exercise training protocols on transcriptional profiles in diaphragm second-order arterioles (D2a) and in the diaphragm feed artery (DFA) from Otsuka Long Evans Tokushima Fatty (OLETF) rats. Arterioles were isolated from the diaphragm of OLETF rats that underwent an endurance exercise training program (EX; n = 13), interval sprint training program (SPRINT; n = 14), or remained sedentary (Sed; n = 12). Our hypothesis was that exercise training would have similar effects on gene expression in the diaphragm and soleus muscle arterioles because diaphragm blood flow increases during exercise to a similar extent as in soleus. Results reveal that several canonical pathways that were significantly altered by exercise in limb skeletal muscles were not among the pathways significantly changed in the diaphragm arterioles including actin cytoskeleton signaling, role of NFAT in regulation of immune response, protein kinase A signaling, and protein ubiquitination pathway. EX training altered the expression of a smaller number of genes than did SPRINT in the DFA but induced a larger number of genes with altered expression in the D2a than did SPRINT. In fact, FDR differential expression analysis (FDR, 10%) indicated that only two genes exhibited altered expression in D2a of SPRINT rats. Very few of the genes that exhibited altered expression in the DFA or D2a were also altered in limb muscle arterioles. Finally, results indicate that the 2a arterioles of soleus muscle (S2a) from endurance-trained animals and the DFA of SPRINT animals exhibited the largest number of genes with altered expression.


Subject(s)
Arterioles/physiopathology , Diaphragm/physiopathology , Gene Expression/physiology , Muscle, Skeletal/physiopathology , Obesity/physiopathology , Physical Conditioning, Animal/physiology , Animals , Male , Rats , Rats, Inbred OLETF , Regional Blood Flow/physiology , Signal Transduction/physiology , Transcriptome/physiology , Vasodilation/physiology
14.
Physiol Rep ; 3(7)2015 Jul.
Article in English | MEDLINE | ID: mdl-26197933

ABSTRACT

Low-intrinsic aerobic capacity is associated with increased risk for cardiovascular and metabolic diseases and is a strong predictor of early mortality. The effects of intrinsic aerobic capacity on the vascular response to insulin are largely unknown. We tested the hypothesis that rats selectively bred for a low capacity to run (LCR) exhibit vascular dysfunction and impaired vascular reactivity to insulin compared to high capacity running (HCR) rats. Mature female LCR (n = 21) and HCR (n = 17) rats were maintained under sedentary conditions, and in vitro thoracic aortic vascular function was assessed. LCR exhibited greater body mass (13%), body fat (35%), and subcutaneous, perigonadal, and retroperitoneal adipose tissue mass, than HCR. During an intraperitoneal glucose tolerance test, glucose area under the curve (AUC) was not different but insulin AUC was 2-fold greater in LCR than HCR. Acetylcholine and insulin-stimulated aortic vasorelaxation was significantly greater in LCR (65.2 ± 3.8%, and 32.7 ± 4.1%) than HCR (55.0 ± 3.3%, and 16.7 ± 2.8%). Inhibition of nitric oxide synthase (NOS) with L-NAME entirely abolished insulin-mediated vasorelaxation in the aorta of LCR, with no effect in HCR. LCR rats exhibited greater expression of Insulin Receptor protein, lower Endothelin Receptor-A protein, a down-regulation of transcripts for markers of immune cell infiltration (CD11C, CD4, and F4/80) and up-regulation of pro-atherogenic inflammatory genes (VCAM-1 and MCP-1) in the aorta wall. Contrary to our hypothesis, low-aerobic capacity was associated with enhanced aortic endothelial function and NO-mediated reactivity to insulin, despite increased adiposity and evidence of whole body insulin resistance.

15.
Life Sci Space Res (Amst) ; 4: 6-10, 2015 Jan.
Article in English | MEDLINE | ID: mdl-26072960

ABSTRACT

The left anterior descending (LAD, interventricular) coronary artery provides the blood supply to the mid-region of the heart and is a major site of vessel stenosis. Changes in LAD function can have major effects on heart function. In this report, we examined the effect of electron simulated solar particle event (eSPE) radiation on LAD function in a porcine animal model. Vasodilatory responses to adenosine diphosphate (ADP; 10(−9)­10(−4) M), bradykinin (BK; 10(−11)­10(−6) M), and sodium nitroprusside (SNP; 10(−10)­10(−4) M) were assessed. The LAD arteries from Control (non-irradiated) and the eSPE (irradiated) animals were isolated and exhibited a similar relaxation response following treatment with either ADP or SNP. In contrast, a significantly reduced relaxation response to BK treatment was observed in the eSPE irradiated group, compared to the control group. These data demonstrate that simulated SPE radiation exposure alters LAD function.


Subject(s)
Adenosine Diphosphate/pharmacology , Bradykinin/pharmacology , Cardiovascular Physiological Phenomena/drug effects , Coronary Vessels/radiation effects , Heart/radiation effects , Nitroprusside/pharmacology , Vasodilator Agents/pharmacology , Animals , Electrons/adverse effects , Male , Swine , Swine, Miniature
16.
Physiol Genomics ; 46(22): 821-32, 2014 Nov 15.
Article in English | MEDLINE | ID: mdl-25271210

ABSTRACT

We used next-generation RNA sequencing (RNA-Seq) technology on the whole transcriptome to identify genes whose expression is consistently affected by obesity across multiple arteries. Specifically, we examined transcriptional profiles of the iliac artery as well as the feed artery, first, second, and third branch order arterioles in the soleus, gastrocnemius, and diaphragm muscles from obese Otsuka Long-Evans Tokushima Fatty (OLETF) and lean Long-Evans Tokushima Otsuka (LETO) rats. Within the gastrocnemius and soleus muscles, the number of genes differentially expressed with obesity tended to increase with increasing branch order arteriole number (i.e., decreasing size of the artery). This trend was opposite in the diaphragm. We found a total of 15 genes that were consistently upregulated with obesity (MIS18A, CTRB1, FAM151B, FOLR2, PXMP4, OAS1B, SREBF2, KLRA17, SLC25A44, SNX10, SLFN3, MEF2BNB, IRF7, RAD23A, LGALS3BP) and five genes that were consistently downregulated with obesity (C2, GOLGA7, RIN3, PCP4, CYP2E1). A small fraction (∼9%) of the genes affected by obesity was modulated across all arteries examined. In conclusion, the present study identifies a select number of genes (i.e., 20 genes) whose expression is consistently altered throughout the arterial network in response to obesity and provides further insight into the heterogeneous vascular effects of obesity. Although there is no known direct function of the majority of 20 genes related to vascular health, the obesity-associated upregulation of SREBF2, LGALS3BP, IRF7, and FOLR2 across all arteries is suggestive of an unfavorable vascular phenotypic alteration with obesity. These data may serve as an important resource for identifying novel therapeutic targets against obesity-related vascular complications.


Subject(s)
Arteries/metabolism , Arteries/pathology , Gene Expression Regulation , Obesity/genetics , Animals , Body Weight , Down-Regulation/genetics , Feeding Behavior , Gene Regulatory Networks , Male , Rats, Inbred OLETF , Up-Regulation/genetics
17.
Physiol Rep ; 2(2): e00225, 2014 Feb 01.
Article in English | MEDLINE | ID: mdl-24744894

ABSTRACT

We tested the hypothesis that a decrease in bioavailability of nitric oxide (NO) would result in increased adipose tissue (AT) inflammation. In particular, we utilized the obese Otsuka Long Evans Tokushima Fatty rat model (n = 20) and lean Long Evans Tokushima Otsuka counterparts (n = 20) to determine the extent to which chronic inhibition of NO synthase (NOS) with N (ω) -nitro-l-arginine methyl ester (L-NAME) treatment (for 4 weeks) upregulates expression of inflammatory genes and markers of immune cell infiltration in retroperitoneal white AT, subscapular brown AT, periaortic AT as well as in its contiguous aorta free of perivascular AT. As expected, relative to lean rats (% body fat = 13.5 ± 0.7), obese rats (% body fat = 27.2 ± 0.8) were hyperlipidemic (total cholesterol 77.0 ± 2.1 vs. 101.0 ± 3.3 mg/dL), hyperleptinemic (5.3 ± 0.9 vs. 191.9 ± 59.9 pg/mL), and insulin-resistant (higher HOMA IR index [3.9 ± 0.8 vs. 25.2 ± 4.1]). Obese rats also exhibited increased expression of proinflammatory genes in perivascular, visceral, and brown ATs. L-NAME treatment produced a small but statistically significant decrease in percent body fat (24.6 ± 0.9 vs. 27.2 ± 0.8%) and HOMA IR index (16.9 ± 2.3 vs. 25.2 ± 4.1) in obese rats. Further, contrary to our hypothesis, we found that expression of inflammatory genes in all AT depots examined were generally unaltered with L-NAME treatment in both lean and obese rats. This was in contrast with the observation that L-NAME produced a significant upregulation of inflammatory and proatherogenic genes in the aorta. Collectively, these findings suggest that chronic NOS inhibition alters transcriptional regulation of proinflammatory genes to a greater extent in the aortic wall compared to its adjacent perivascular AT, or visceral white and subscapular brown AT depots.

18.
Am J Physiol Regul Integr Comp Physiol ; 306(8): R596-606, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24523340

ABSTRACT

Adipose tissue (AT)-derived cytokines are proposed to contribute to obesity-associated vascular insulin resistance. We tested the hypothesis that voluntary physical activity and diet restriction-induced maintenance of body weight would both result in decreased AT inflammation and concomitant improvements in insulin-stimulated vascular relaxation in the hyperphagic, obese Otsuka Long-Evans Tokushima fatty (OLETF) rat. Rats (aged 12 wk) were randomly assigned to sedentary (SED; n = 10), wheel running (WR; n = 10), or diet restriction (DR; n = 10; fed 70% of SED) for 8 wk. WR and DR rats exhibited markedly lower adiposity (7.1 ± 0.4 and 15.7 ± 1.1% body fat, respectively) relative to SED (27 ± 1.2% body fat), as well as improved blood lipid profiles and systemic markers of insulin resistance. Reduced adiposity in both WR and DR was associated with decreased AT mRNA expression of inflammatory genes (e.g., MCP-1, TNF-α, and IL-6) and markers of immune cell infiltration (e.g., CD8, CD11c, and F4/80). The extent of these effects were most pronounced in visceral AT compared with subcutaneous and periaortic AT. Markers of inflammation in brown AT were upregulated with WR but not DR. In periaortic AT, WR- and DR-induced reductions in expression and secretion of cytokines were accompanied with a more atheroprotective gene expression profile in the adjacent aortic wall. WR, but not DR, resulted in greater insulin-stimulated relaxation in the aorta; an effect that was, in part, mediated by a decrease in insulin-induced endothelin-1 activation in WR aorta. Collectively, we show in OLETF rats that lower adiposity leads to less AT and aortic inflammation, as well as an exercise-specific improvement in insulin-stimulated vasorelaxation.


Subject(s)
Adipose Tissue/metabolism , Adiposity/physiology , Insulin Resistance/physiology , Insulin/metabolism , Obesity/metabolism , Adipose Tissue/blood supply , Animals , Body Weight/physiology , Diet , Disease Models, Animal , Interleukin-6/metabolism , Male , Phenotype , Rats , Rats, Inbred OLETF , Running/physiology , Tumor Necrosis Factor-alpha/metabolism
19.
J Appl Physiol (1985) ; 116(8): 1033-47, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24408995

ABSTRACT

We employed next-generation RNA sequencing (RNA-Seq) technology to determine the extent to which exercise training alters global gene expression in skeletal muscle feed arteries and aortic endothelial cells of obese Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Transcriptional profiles of the soleus and gastrocnemius muscle feed arteries (SFA and GFA, respectively) and aortic endothelial cell-enriched samples from rats that underwent an endurance exercise training program (EndEx; n = 12) or a interval sprint training program (IST; n = 12) or remained sedentary (Sed; n = 12) were examined. In response to EndEx, there were 39 upregulated (e.g., MANF) and 20 downregulated (e.g., ALOX15) genes in SFA and 1 upregulated (i.e., Wisp2) and 1 downregulated (i.e., Crem) gene in GFA [false discovery rate (FDR) < 10%]. In response to IST, there were 305 upregulated (e.g., MANF, HSPA12B) and 324 downregulated genes in SFA and 101 upregulated and 66 downregulated genes in GFA, with an overlap of 32 genes between arteries. Furthermore, in aortic endothelial cells, there were 183 upregulated (e.g., eNOS, SOD-3) and 141 downregulated (e.g., ATF3, Clec1b, npy, leptin) genes with EndEx and 71 upregulated and 69 downregulated genes with IST, with an overlap of 35 between exercise programs. Expression of only two genes (Tubb2b and Slc9a3r2) was altered (i.e., increased) by exercise in all three arteries. The finding that both EndEx and IST produced greater transcriptional changes in the SFA compared with the GFA is intriguing when considering the fact that treadmill bouts of exercise are associated with greater relative increases in blood flow to the gastrocnemius muscle compared with the soleus muscle.


Subject(s)
Arteries/metabolism , Muscle, Skeletal/blood supply , Obesity/genetics , Obesity/therapy , Physical Conditioning, Animal/physiology , Animals , Aorta/metabolism , Endothelial Cells/metabolism , Gene Regulatory Networks , Physical Endurance , Rats , Rats, Inbred OLETF , Sequence Analysis, RNA , Transcriptome
20.
J Appl Physiol (1985) ; 116(8): 1017-32, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24436298

ABSTRACT

We employed next-generation RNA sequencing (RNA-Seq) technology to determine the influence of obesity on global gene expression in skeletal muscle feed arteries. Transcriptional profiles of the gastrocnemius and soleus muscle feed arteries (GFA and SFA, respectively) and aortic endothelial cell-enriched samples from obese Otsuka Long-Evans Tokushima Fatty (OLETF) and lean Long-Evans Tokushima Otsuka (LETO) rats were examined. Obesity produced 282 upregulated and 133 downregulated genes in SFA and 163 upregulated and 77 downregulated genes in GFA [false discovery rate (FDR) < 10%] with an overlap of 93 genes between the arteries. In LETO rats, there were 89 upregulated and 114 downregulated genes in the GFA compared with the SFA. There were 244 upregulated and 275 downregulated genes in OLETF rats (FDR < 10%) in the GFA compared with the SFA, with an overlap of 76 differentially expressed genes common to both LETO and OLETF rats in both the GFA and SFA. A total of 396 transcripts were found to be differentially expressed between LETO and OLETF in aortic endothelial cell-enriched samples. Overall, we found 1) the existence of heterogeneity in the transcriptional profile of the SFA and GFA within healthy LETO rats, 2) that this between-vessel heterogeneity was markedly exacerbated in the hyperphagic, obese OLETF rat, and 3) a greater number of genes whose expression was altered by obesity in the SFA compared with the GFA. Also, results indicate that in OLETF rats the GFA takes on a relatively more proatherogenic phenotype compared with the SFA.


Subject(s)
Arteries/metabolism , Muscle, Skeletal/blood supply , Obesity/genetics , Animals , Aorta/metabolism , Endothelial Cells/metabolism , Gene Regulatory Networks , Rats , Rats, Inbred OLETF , Rats, Long-Evans , Sequence Analysis, RNA , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...