Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 129
Filter
1.
J Clin Invest ; 134(1)2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38165038

ABSTRACT

Myotonic dystrophy type 1 (DM1) involves misregulated alternative splicing for specific genes. We used exon or nucleotide deletion to mimic altered splicing of genes central to muscle excitation-contraction coupling in mice. Mice with forced skipping of exon 29 in the CaV1.1 calcium channel combined with loss of ClC-1 chloride channel function displayed markedly reduced lifespan, whereas other combinations of splicing mimics did not affect survival. The Ca2+/Cl- bi-channelopathy mice exhibited myotonia, weakness, and impairment of mobility and respiration. Chronic administration of the calcium channel blocker verapamil rescued survival and improved force generation, myotonia, and respiratory function. These results suggest that Ca2+/Cl- bi-channelopathy contributes to muscle impairment in DM1 and is potentially mitigated by common clinically available calcium channel blockers.


Subject(s)
Channelopathies , Myotonia , Myotonic Dystrophy , Mice , Animals , Myotonic Dystrophy/drug therapy , Myotonic Dystrophy/genetics , Myotonic Dystrophy/metabolism , Calcium/metabolism , Chlorides/metabolism , Myotonia/metabolism , Verapamil/pharmacology , Verapamil/metabolism , Channelopathies/genetics , Channelopathies/metabolism , Alternative Splicing , Chloride Channels/genetics , Chloride Channels/metabolism , Muscle, Skeletal/metabolism
2.
bioRxiv ; 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37398406

ABSTRACT

Myotonic dystrophy type 1 (DM1) involves misregulated alternative splicing for specific genes. We used exon or nucleotide deletion to mimic altered splicing of genes central to muscle excitation-contraction coupling processes in mice. Mice with forced-skipping of exon 29 in CaV1.1 calcium channel combined with loss of ClC-1 chloride channel function showed a markedly reduced lifespan, whereas other combinations of splicing mimics did not affect survival. The Ca2+/Cl- bi-channelopathy mice exhibited myotonia, weakness, and impairment of mobility and respiration. Chronic administration of the calcium channel blocker verapamil rescued survival and improved force generation, myotonia, and respiratory function. These results suggest that Ca2+/Cl- bi-channelopathy contributes to muscle impairment in DM1 and is potentially mitigated by common clinically available calcium channel blockers.

3.
Lancet Neurol ; 22(3): 218-228, 2023 03.
Article in English | MEDLINE | ID: mdl-36804094

ABSTRACT

BACKGROUND: Myotonic dystrophy type 1 results from an RNA gain-of-function mutation, in which DM1 protein kinase (DMPK) transcripts carrying expanded trinucleotide repeats exert deleterious effects. Antisense oligonucleotides (ASOs) provide a promising approach to treatment of myotonic dystrophy type 1 because they reduce toxic RNA levels. We aimed to investigate the safety of baliforsen (ISIS 598769), an ASO targeting DMPK mRNA. METHODS: In this dose-escalation phase 1/2a trial, adults aged 20-55 years with myotonic dystrophy type 1 were enrolled at seven tertiary referral centres in the USA and randomly assigned via an interactive web or phone response system to subcutaneous injections of baliforsen 100 mg, 200 mg, or 300 mg, or placebo (6:2 randomisation at each dose level), or to baliforsen 400 mg or 600 mg, or placebo (10:2 randomisation at each dose level), on days 1, 3, 5, 8, 15, 22, 29, and 36. Sponsor personnel directly involved with the trial, participants, and all study personnel were masked to treatment assignments. The primary outcome measure was safety in all participants who received at least one dose of study drug up to day 134. This trial is registered with ClinicalTrials.gov (NCT02312011), and is complete. FINDINGS: Between Dec 12, 2014, and Feb 22, 2016, 49 participants were enrolled and randomly assigned to baliforsen 100 mg (n=7, one patient not dosed), 200 mg (n=6), 300 mg (n=6), 400 mg (n=10), 600 mg (n=10), or placebo (n=10). The safety population comprised 48 participants who received at least one dose of study drug. Treatment-emergent adverse events were reported for 36 (95%) of 38 participants assigned to baliforsen and nine (90%) of ten participants assigned to placebo. Aside from injection-site reactions, common treatment-emergent adverse events were headache (baliforsen: ten [26%] of 38 participants; placebo: four [40%] of ten participants), contusion (baliforsen: seven [18%] of 38; placebo: one [10%] of ten), and nausea (baliforsen: six [16%] of 38; placebo: two [20%] of ten). Most adverse events (baliforsen: 425 [86%] of 494; placebo: 62 [85%] of 73) were mild in severity. One participant (baliforsen 600 mg) developed transient thrombocytopenia considered potentially treatment related. Baliforsen concentrations in skeletal muscle increased with dose. INTERPRETATION: Baliforsen was generally well tolerated. However, skeletal muscle drug concentrations were below levels predicted to achieve substantial target reduction. These results support the further investigation of ASOs as a therapeutic approach for myotonic dystrophy type 1, but suggest improved drug delivery to muscle is needed. FUNDING: Ionis Pharmaceuticals, Biogen.


Subject(s)
Myotonic Dystrophy , Oligonucleotides, Antisense , Adult , Humans , Double-Blind Method , Myotonic Dystrophy/drug therapy , Myotonic Dystrophy/genetics , Myotonin-Protein Kinase , Oligonucleotides, Antisense/pharmacology , Oligonucleotides, Antisense/therapeutic use , RNA , RNA, Messenger/metabolism , Treatment Outcome
4.
Muscle Nerve ; 66(4): 508-512, 2022 10.
Article in English | MEDLINE | ID: mdl-35778789

ABSTRACT

INTRODUCTION/AIMS: Disease progression in myotonic dystrophy (DM) is marked by milestone events when functional thresholds are crossed. DM type 2 (DM2) is considered less severe than DM type 1 (DM1), but it is unknown whether this applies uniformly to all features. We compared the age-dependent risk for milestone events in DM1 and DM2 and tested for associations with age of onset and sex. METHODS: We studied a large cohort of adult participants in a national registry of DM1 and DM2. Using annual surveys from participants, we ascertained milestone events for motor involvement (use of cane, walker, ankle brace, wheelchair, or ventilatory device), systemic involvement (diabetes, pacemaker, cancer), loss of employment due to DM, and death. RESULTS: Mean follow-up of registry participants (929 DM1 and 222 DM2 patients) was 7 years. Disability and motor milestones occurred at earlier ages in DM1 than in DM2. In contrast, the risk of diabetes was higher and tended to occur earlier in DM2 (hazard ratio [HR], 0.56; P ≤ .001). In DM1, the milestone events tended to occur earlier, and life expectancy was reduced, when symptoms began at younger ages. In DM1, men were at greater risk for disability (HR, 1.34; P ≤ .01), use of ankle braces (HR, 1.41; P = .02), and diabetes (HR, 2.2; P ≤ .0001), whereas women were at greater risk for needing walkers (HR, 0.68; P = .001) or malignancy (HR, 0.66; P ≤ .01). DISCUSSION: Milestone events recorded through registries can be used to assess long-term impact of DM in large cohorts. Except for diabetes, the age-related risk of milestone events is greater in DM1 than in DM2.


Subject(s)
Diabetes Mellitus, Type 2 , Myotonic Dystrophy , Adult , Cohort Studies , Female , Humans , Male , Myotonic Dystrophy/diagnosis , Registries
5.
J Clin Invest ; 132(10)2022 05 16.
Article in English | MEDLINE | ID: mdl-35575095

ABSTRACT

Myotonic dystrophy type 1 (DM1) is a multisystem trinucleotide repeat expansion disorder characterized by the misregulated alternative splicing of critical mRNAs. Previous work in a transgenic mouse model indicated that aerobic exercise effectively improves splicing regulation and function in skeletal muscle. In this issue of the JCI, Mikhail et al. describe the safety and benefits of applying this approach in individuals affected by DM1. A 12-week aerobic exercise program improved aerobic capacity and mobility, but not by the mechanism observed in transgenic mice. Here, we consider the possible reasons for this disparity and review other salient findings of the study in the context of evolving DM1 research.


Subject(s)
Myotonic Dystrophy , Alternative Splicing , Animals , Mice , Mice, Transgenic , Muscle, Skeletal/metabolism , Myotonic Dystrophy/genetics , Myotonic Dystrophy/metabolism , Myotonic Dystrophy/therapy , RNA Splicing , Trinucleotide Repeat Expansion/genetics
6.
Muscle Nerve ; 66(3): 336-339, 2022 09.
Article in English | MEDLINE | ID: mdl-35426155

ABSTRACT

INTRODUCTION/AIMS: Remote study visits (RSVs) are emerging as important tools for clinical research. We tested the feasibility of using RSVs to evaluate patients with myotonic dystrophy type 1 (DM1), including remote quantitative assessment of muscle function, and we assessed correlations of remote assessments with patient-reported function. METHODS: Twenty three subjects with DM1 were consented remotely. Toolkits containing a tablet computer, grip dynamometer, and spirometer were shipped to participants. The tablets were loaded with software for video-conferencing and questionnaires about functional impairment, patient experience with technology, and willingness to participate in future remote studies. Grip strength, forced vital capacity, peak cough flow, timed-up-and-go (TUG), and grip myotonia (hand opening time) were determined during RSVs. We assessed correlations of remote assessments with patient-reported outcomes of muscle function and with CTG repeat size. RESULTS: All 23 subjects completed RSVs. 95% of participants were able to complete all components of the remote study. All toolkit components were returned upon completion. Grip strength and TUG demonstrated moderate to strong correlations with self-reported inventories of upper and lower extremity impairment, respectively (ρ = 0.7 and ρ = -0.52). A total of 91% of subjects expressed interest in participating in future RSVs. DISCUSSION: Results of this study support the feasibility of using portable devices and video-conferencing for remote collection of patient-reported outcomes and quantitative assessment of muscle function in DM1.


Subject(s)
Myotonia , Myotonic Dystrophy , Feasibility Studies , Hand Strength , Humans , Muscle, Skeletal , Myotonic Dystrophy/diagnosis
7.
Muscle Nerve ; 65(5): 560-567, 2022 05.
Article in English | MEDLINE | ID: mdl-35179228

ABSTRACT

INTRODUCTION/AIMS: Myotonic dystrophy type 1 (DM1) is known to affect cognitive function, but the best methods to assess central nervous system involvement in multicenter studies have not been determined. In this study our primary aim was to evaluate the potential of computerized cognitive tests to assess cognition in DM1. METHODS: We conducted a prospective, longitudinal, observational study of 113 adults with DM1 at six sites. Psychomotor speed, attention, working memory, and executive functioning were assessed at baseline, 3 months, and 12 months using computerized cognitive tests. Results were compared with assessments of muscle function and patient reported outcomes (PROs), including the Myotonic Dystrophy Health Index (MDHI) and the 5-dimension EuroQol (EQ-5D-5L) questionnaire. RESULTS: Based on intraclass correlation coefficients, computerized cognitive tests had moderate to good reliability for psychomotor speed (0.76), attention (0.82), working memory speed (0.79), working memory accuracy (0.65), and executive functioning (0.87). Performance at baseline was lowest for working memory accuracy (P < .0001). Executive function performance improved from baseline to 3 months (P < .0001), without further changes over 1 year. There was a moderate correlation between poorer executive function and larger CTG repeat size (r = -0.433). There were some weak associations between PROs and cognitive performance. DISCUSSION: Computerized tests of cognition are feasible in multicenter studies of DM1. Poor performance was exhibited in working memory, which may be a useful variable in clinical trials. Learning effects may have contributed to the improvement in executive functioning. The relationship between PROs and cognitive impairment in DM1 requires further study.


Subject(s)
Myotonic Dystrophy , Adult , Cognition , Computers , Humans , Longitudinal Studies , Myotonic Dystrophy/complications , Myotonic Dystrophy/diagnosis , Prospective Studies , Reproducibility of Results
8.
Nucleic Acids Res ; 49(4): 2240-2254, 2021 02 26.
Article in English | MEDLINE | ID: mdl-33503262

ABSTRACT

Biomarker-driven trials hold promise for therapeutic development in chronic diseases, such as muscular dystrophy. Myotonic dystrophy type 1 (DM1) involves RNA toxicity, where transcripts containing expanded CUG-repeats (CUGexp) accumulate in nuclear foci and sequester splicing factors in the Muscleblind-like (Mbnl) family. Oligonucleotide therapies to mitigate RNA toxicity have emerged but reliable measures of target engagement are needed. Here we examined muscle transcriptomes in mouse models of DM1 and found that CUGexp expression or Mbnl gene deletion cause similar dysregulation of alternative splicing. We selected 35 dysregulated exons for further study by targeted RNA sequencing. Across a spectrum of mouse models, the individual splice events and a composite index derived from all events showed a graded response to decrements of Mbnl or increments of CUGexp. Antisense oligonucleotides caused prompt reduction of CUGexp RNA and parallel correction of the splicing index, followed by subsequent elimination of myotonia. These results suggest that targeted splice sequencing may provide a sensitive and reliable way to assess therapeutic impact in DM1.


Subject(s)
Alternative Splicing , Myotonic Dystrophy/genetics , Myotonic Dystrophy/therapy , Sequence Analysis, RNA , Animals , DNA-Binding Proteins/genetics , Exons , Gene Deletion , Gene Expression Regulation, Developmental , Mice , Muscles/metabolism , Muscles/physiology , Myotonic Dystrophy/metabolism , Oligonucleotides, Antisense , RNA-Binding Proteins/genetics , Regeneration , Transcriptome , Trinucleotide Repeat Expansion
9.
Cell Rep ; 34(3): 108634, 2021 01 19.
Article in English | MEDLINE | ID: mdl-33472074

ABSTRACT

Myotonic dystrophy (DM) is caused by expanded CTG/CCTG repeats, causing symptoms in skeletal muscle, heart, and central nervous system (CNS). CNS issues are debilitating and include hypersomnolence, executive dysfunction, white matter atrophy, and neurofibrillary tangles. Here, we generate RNA-seq transcriptomes from DM and unaffected frontal cortex and identify 130 high-confidence splicing changes, most occurring only in cortex, not skeletal muscle or heart. Mis-spliced exons occur in neurotransmitter receptors, ion channels, and synaptic scaffolds, and GRIP1 mis-splicing modulates kinesin association. Optical mapping of expanded CTG repeats reveals extreme mosaicism, with some alleles showing >1,000 CTGs. Mis-splicing severity correlates with CTG repeat length across individuals. Upregulated genes tend to be microglial and endothelial, suggesting neuroinflammation, and downregulated genes tend to be neuronal. Many gene expression changes strongly correlate with mis-splicing, suggesting candidate biomarkers of disease. These findings provide a framework for mechanistic and therapeutic studies of the DM CNS.


Subject(s)
Frontal Lobe/physiopathology , Myotonic Dystrophy/genetics , Transcriptome/genetics , Humans
10.
Cell Chem Biol ; 28(1): 34-45.e6, 2021 01 21.
Article in English | MEDLINE | ID: mdl-33157036

ABSTRACT

Many diseases are caused by toxic RNA repeats. Herein, we designed a lead small molecule that binds the structure of the r(CUG) repeat expansion [r(CUG)exp] that causes myotonic dystrophy type 1 (DM1) and Fuchs endothelial corneal dystrophy (FECD) and rescues disease biology in patient-derived cells and in vivo. Interestingly, the compound's downstream effects are different in the two diseases, owing to the location of the repeat expansion. In DM1, r(CUG)exp is harbored in the 3' untranslated region, and the compound has no effect on the mRNA's abundance. In FECD, however, r(CUG)exp is located in an intron, and the small molecule facilitates excision of the intron, which is then degraded by the RNA exosome complex. Thus, structure-specific, RNA-targeting small molecules can act disease specifically to affect biology, either by disabling the gain-of-function mechanism (DM1) or by stimulating quality control pathways to rid a disease-affected cell of a toxic RNA (FECD).


Subject(s)
Exosomes/drug effects , Fuchs' Endothelial Dystrophy/drug therapy , Myotonic Dystrophy/drug therapy , Small Molecule Libraries/pharmacology , Trinucleotide Repeat Expansion/drug effects , Cells, Cultured , Exosomes/metabolism , Female , Fuchs' Endothelial Dystrophy/metabolism , Humans , Male , Myotonic Dystrophy/metabolism , Trinucleotide Repeat Expansion/genetics
11.
Neurology ; 96(2): e228-e240, 2021 01 12.
Article in English | MEDLINE | ID: mdl-33046619

ABSTRACT

OBJECTIVE: To assess mexiletine's long-term safety and effect on 6-minute walk distance in a well-defined cohort of patients with myotonic dystrophy type 1 (DM1). METHODS: We performed a randomized, double-blind, placebo-controlled trial of mexiletine (150 mg 3 times daily) to evaluate its efficacy and safety in a homogenous cohort of adult ambulatory patients with DM1. The primary outcome was change in 6-minute walk distance at 6 months. Secondary outcomes included changes in hand grip myotonia, strength, swallowing, forced vital capacity, lean muscle mass, Myotonic Dystrophy Health Index scores, and 24-hour Holter and ECG results at 3 and 6 months. RESULTS: Forty-two participants were randomized and 40 completed the 6-month follow-up (n = 20 in both groups). No significant effects of mexiletine were observed on 6-minute walk distance, but hand grip myotonia was improved with mexiletine treatment. There were no differences between the mexiletine and placebo groups with respect to the frequency or type of adverse events. Changes in PR, QRS, and QTc intervals were similar in mexiletine- and placebo-treated participants. CONCLUSIONS: There was no benefit of mexiletine on 6-minute walk distance at 6 months. Although mexiletine had a sustained positive effect on objectively measured hand grip myotonia, this was not seen in measures reflecting participants' perceptions of their myotonia. No effects of mexiletine on cardiac conduction measures were seen over the 6-month follow-up period. CLASSIFICATION OF EVIDENCE: This study provides Class I evidence that for ambulatory patients with DM1, mexiletine does not significantly change 6-minute walk distance at 6 months.


Subject(s)
Hand Strength/physiology , Mexiletine/therapeutic use , Myotonic Dystrophy/drug therapy , Myotonic Dystrophy/physiopathology , Voltage-Gated Sodium Channel Blockers/therapeutic use , Walk Test/trends , Adult , Cohort Studies , Double-Blind Method , Electrocardiography/drug effects , Electrocardiography/trends , Female , Humans , Male , Mexiletine/pharmacology , Middle Aged , Myotonic Dystrophy/diagnosis , Voltage-Gated Sodium Channel Blockers/pharmacology , Walk Test/methods
12.
Sci Transl Med ; 12(541)2020 04 29.
Article in English | MEDLINE | ID: mdl-32350131

ABSTRACT

Myotonic dystrophy type 1 (DM1) is an RNA-based disease with no current treatment. It is caused by a transcribed CTG repeat expansion within the 3' untranslated region of the dystrophia myotonica protein kinase (DMPK) gene. Mutant repeat expansion transcripts remain in the nuclei of patients' cells, forming distinct microscopically detectable foci that contribute substantially to the pathophysiology of the condition. Here, we report small-molecule inhibitors that remove nuclear foci and have beneficial effects in the HSALR mouse model, reducing transgene expression, leading to improvements in myotonia, splicing, and centralized nuclei. Using chemoproteomics in combination with cell-based assays, we identify cyclin-dependent kinase 12 (CDK12) as a druggable target for this condition. CDK12 is a protein elevated in DM1 cell lines and patient muscle biopsies, and our results showed that its inhibition led to reduced expression of repeat expansion RNA. Some of the inhibitors identified in this study are currently the subject of clinical trials for other indications and provide valuable starting points for a drug development program in DM1.


Subject(s)
Myotonic Dystrophy , Animals , Cyclin-Dependent Kinases , Disease Models, Animal , Humans , Mice , Myotonic Dystrophy/drug therapy , Myotonic Dystrophy/genetics , RNA , RNA Splicing/genetics , Trinucleotide Repeat Expansion/genetics
13.
PLoS One ; 15(4): e0231000, 2020.
Article in English | MEDLINE | ID: mdl-32287265

ABSTRACT

Myotonic dystrophy type 1 (DM1) is a rare genetic disorder, characterised by muscular dystrophy, myotonia, and other symptoms. DM1 is caused by the expansion of a CTG repeat in the 3'-untranslated region of DMPK. Longer CTG expansions are associated with greater symptom severity and earlier age at onset. The primary mechanism of pathogenesis is thought to be mediated by a gain of function of the CUG-containing RNA, that leads to trans-dysregulation of RNA metabolism of many other genes. Specifically, the alternative splicing (AS) and alternative polyadenylation (APA) of many genes is known to be disrupted. In the context of clinical trials of emerging DM1 treatments, it is important to be able to objectively quantify treatment efficacy at the level of molecular biomarkers. We show how previously described candidate mRNA biomarkers can be used to model an effective reduction in CTG length, using modern high-dimensional statistics (machine learning), and a blood and muscle mRNA microarray dataset. We show how this model could be used to detect treatment effects in the context of a clinical trial.


Subject(s)
Myotonic Dystrophy/genetics , Myotonic Dystrophy/therapy , RNA, Messenger/genetics , Alternative Splicing , Biostatistics , Clinical Trials as Topic/methods , Clinical Trials as Topic/statistics & numerical data , Databases, Nucleic Acid/statistics & numerical data , Genetic Markers , Humans , Least-Squares Analysis , Machine Learning , Models, Genetic , Muscles/metabolism , Myotonic Dystrophy/metabolism , Myotonin-Protein Kinase/genetics , Oligonucleotide Array Sequence Analysis/statistics & numerical data , Polyadenylation , RNA, Messenger/metabolism , Treatment Outcome , Trinucleotide Repeat Expansion
14.
J Gen Physiol ; 152(2)2020 02 03.
Article in English | MEDLINE | ID: mdl-31968060

ABSTRACT

Myotonic dystrophy type 1 (DM1), the most common form of muscular dystrophy in adults, results from the expression of toxic gain-of-function transcripts containing expanded CUG-repeats. DM1 patients experience cardiac electrophysiological defects, including prolonged PR-, QRS-, and QT-intervals, that increase susceptibility to sudden cardiac death (SCD). However, the specific biophysical and molecular mechanisms that underlie the electrocardiograph (ECG) abnormalities and SCD in DM1 are unclear. Here, we addressed this issue using a novel transgenic mouse model that exhibits robust cardiac expression of expanded CUG-repeat RNA (LC15 mice). ECG measurements in conscious LC15 mice revealed significantly prolonged QRS- and corrected QT-intervals, but a normal PR-interval. Although spontaneous arrhythmias were not observed in conscious LC15 mice under nonchallenged conditions, acute administration of the sodium channel blocker flecainide prolonged the QRS-interval and unveiled an increased susceptibility to lethal ventricular arrhythmias. Current clamp measurements in ventricular myocytes from LC15 mice revealed significantly reduced action potential upstroke velocity at physiological pacing (9 Hz) and prolonged action potential duration at all stimulation rates (1-9 Hz). Voltage clamp experiments revealed significant rightward shifts in the voltage dependence of sodium channel activation and steady-state inactivation, as well as a marked reduction in outward potassium current density. Together, these findings indicate that expression of expanded CUG-repeat RNA in the murine heart results in reduced sodium and potassium channel activity that results in QRS- and QT-interval prolongation, respectively.


Subject(s)
Arrhythmias, Cardiac/metabolism , Long QT Syndrome/metabolism , Myocytes, Cardiac/metabolism , Myotonic Dystrophy/metabolism , RNA/metabolism , Action Potentials/drug effects , Action Potentials/physiology , Animals , Arrhythmias, Cardiac/drug therapy , Disease Models, Animal , Humans , Long QT Syndrome/drug therapy , Mice , Mice, Transgenic , Myocytes, Cardiac/drug effects , Myotonic Dystrophy/drug therapy , Sodium Channel Blockers/pharmacology
15.
Neurol Clin Pract ; 9(4): 343-353, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31583190

ABSTRACT

PURPOSE OF REVIEW: Myotonic dystrophy type 2 (DM2) is a rare, progressive multisystem disease particularly affecting the skeletal muscle. A causal therapy is not yet available; however, prompt, appropriate symptomatic treatments are essential to limit disease-related complications. Evidence-based guidelines to assist medical practitioners in the care of DM2 patients do not exist. RECENT FINDINGS: The Myotonic Dystrophy Foundation (MDF) previously worked with an international group of 66 clinicians to develop consensus-based care recommendations for myotonic dystrophy type 1. Following a similar approach, the MDF recruited 15 international clinicians with long-standing experience in the care of DM2 patients to develop consensus-based care recommendations. The single text procedure was adopted. This process generated a 4-page Quick Reference Guide and a comprehensive 55-page document that provides care recommendations for DM2 patients. SUMMARY: The resulting recommendations will help standardize and improve care for DM2 patients and facilitate appropriate management in centers without neuromuscular specialists.

16.
J Soc Psychol ; 159(4): 482-489, 2019.
Article in English | MEDLINE | ID: mdl-30183546

ABSTRACT

The evoking freedom or "but you are free" (BYAF) technique is a social influence tactic that offers recipients the freedom to accept or decline a request. This research tested the effectiveness of the evoking freedom technique in two field experiments. Participants were asked either to complete a survey (Experiment 1) or to allow a stranger to borrow their mobile phone to make a call (Experiment 2) on an urban university campus. Half of the requests involved language that evoked freedom, and half of the requests were direct. In both experiments, results showed significantly greater compliance in the evoking freedom condition. This research extends previous work by demonstrating the effectiveness of the technique using a high-stakes request and in a culture other than that of France, where the majority of evoking freedom studies have been conducted.


Subject(s)
Cooperative Behavior , Freedom , Interpersonal Relations , Psychological Theory , Adult , Aged , Female , Humans , Male , Middle Aged , Smartphone , Surveys and Questionnaires , United States , Urban Population , Young Adult
17.
Hum Mol Genet ; 28(8): 1312-1321, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30561649

ABSTRACT

Myotonic dystrophy (dystrophia myotonica, DM) is a multi-systemic disease caused by expanded CTG or CCTG microsatellite repeats. Characterized by symptoms in muscle, heart and central nervous system, among others, it is one of the most variable diseases known. A major pathogenic event in DM is the sequestration of muscleblind-like proteins by CUG or CCUG repeat-containing RNAs transcribed from expanded repeats, and differences in the extent of MBNL sequestration dependent on repeat length and expression level may account for some portion of the variability. However, many other cellular pathways are reported to be perturbed in DM, and the severity of specific disease symptoms varies among individuals. To help understand this variability and facilitate research into DM, we generated 120 RNASeq transcriptomes from skeletal and heart muscle derived from healthy and DM1 biopsies and autopsies. A limited number of DM2 and Duchenne muscular dystrophy samples were also sequenced. We analyzed splicing and gene expression, identified tissue-specific changes in RNA processing and uncovered transcriptome changes strongly correlating with muscle strength. We created a web resource at http://DMseq.org that hosts raw and processed transcriptome data and provides a lightweight, responsive interface that enables browsing of processed data across the genome.


Subject(s)
Muscle, Skeletal/metabolism , Myocardium/metabolism , Myotonic Dystrophy/genetics , Adult , Alternative Splicing/genetics , Base Sequence , Female , Gene Expression Profiling/methods , Heart/physiology , Humans , Male , Microsatellite Repeats/genetics , Muscle, Skeletal/physiology , Myotonic Dystrophy/metabolism , Principal Component Analysis , RNA/genetics , RNA Splicing/genetics , RNA-Binding Proteins/metabolism , Transcriptome/genetics
18.
Proc Natl Acad Sci U S A ; 115(16): 4234-4239, 2018 04 17.
Article in English | MEDLINE | ID: mdl-29610297

ABSTRACT

Expansions of simple sequence repeats, or microsatellites, have been linked to ∼30 neurological-neuromuscular diseases. While these expansions occur in coding and noncoding regions, microsatellite sequence and repeat length diversity is more prominent in introns with eight different trinucleotide to hexanucleotide repeats, causing hereditary diseases such as myotonic dystrophy type 2 (DM2), Fuchs endothelial corneal dystrophy (FECD), and C9orf72 amyotrophic lateral sclerosis and frontotemporal dementia (C9-ALS/FTD). Here, we test the hypothesis that these GC-rich intronic microsatellite expansions selectively trigger host intron retention (IR). Using DM2, FECD, and C9-ALS/FTD as examples, we demonstrate that retention is readily detectable in affected tissues and peripheral blood lymphocytes and conclude that IR screening constitutes a rapid and inexpensive biomarker for intronic repeat expansion disease.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , DNA Repeat Expansion/genetics , Frontotemporal Dementia/genetics , Fuchs' Endothelial Dystrophy/genetics , Introns/genetics , Myotonic Dystrophy/genetics , Base Composition , Biomarkers , Humans , Lymphocytes/chemistry , Muscle, Skeletal/chemistry , Myocardium/chemistry , Organ Specificity , Polymorphism, Single Nucleotide , RNA Splicing , RNA-Binding Proteins/genetics , Reverse Transcriptase Polymerase Chain Reaction , Sensitivity and Specificity , Tissue Array Analysis
20.
Biochemistry ; 57(14): 2094-2108, 2018 04 10.
Article in English | MEDLINE | ID: mdl-29562132

ABSTRACT

We report the development of a new class of nucleic acid ligands that is comprised of Janus bases and the MPγPNA backbone and is capable of binding rCAG repeats in a sequence-specific and selective manner via, inference, bivalent H-bonding interactions. Individually, the interactions between ligands and RNA are weak and transient. However, upon the installation of a C-terminal thioester and an N-terminal cystine and the reduction of disulfide bond, they undergo template-directed native chemical ligation to form concatenated oligomeric products that bind tightly to the RNA template. In the absence of an RNA target, they self-deactivate by undergoing an intramolecular reaction to form cyclic products, rendering them inactive for further binding. The work has implications for the design of ultrashort nucleic acid ligands for targeting rCAG-repeat expansion associated with Huntington's disease and a number of other related neuromuscular and neurodegenerative disorders.


Subject(s)
Huntington Disease , RNA/chemistry , Trinucleotide Repeat Expansion , Humans , Ligands , RNA/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...