Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Pharmacol ; 954: 175837, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37329973

ABSTRACT

OBJECTIVE: Long-acting dual amylin and calcitonin receptor agonists (DACRAs) hold great promise as potential treatments for obesity and its associated comorbidities. These agents have demonstrated beneficial effects on body weight, glucose control, and insulin action mirroring the effects observed with glucagon-like peptide-1 (GLP-1) agonist treatment. Strategies aimed at enhancing and prolonging treatment efficacy include treatment sequencing and combination therapy. Here, we sought to investigate the impact of switching between or combining treatment with the DACRA KBP-336 and the GLP-1 analog semaglutide in fed rats with obesity induced by a high-fat diet (HFD). METHODS: Two studies were performed in which HFD-induced obese Sprague Dawley rats were switched between treatment with KBP-336 (4.5 nmol/kg, Q3D) and semaglutide (50 nmol/kg, Q3D) or a combination of the two. Treatment efficacy on weight loss and food intake was evaluated, and glucose tolerance was assessed by oral glucose tolerance tests. RESULTS: KBP-336 and semaglutide monotherapy resulted in a similar reduction in body weight and food intake. Treatment sequencing resulted in continuous weight loss and all monotherapies resulted in similar weight loss independent of the treatment regimen (P < 0.001 compared to vehicle). The combination of KBP-336 and semaglutide significantly improved the weight loss compared to either monotherapy alone (P < 0.001), which was evident in the adiposity at the study end. All treatments improved glucose tolerance, with the KBP-effect on insulin sensitivity as the dominant response. CONCLUSIONS: These findings highlight KBP-336 as a promising anti-obesity therapy both alone, in treatment sequencing, and in combination with semaglutide or other incretin-based therapies.


Subject(s)
Amylin Receptor Agonists , Bone Density Conservation Agents , Diabetes Mellitus, Type 2 , Rats , Animals , Amylin Receptor Agonists/pharmacology , Receptors, Calcitonin/agonists , Islet Amyloid Polypeptide , Rats, Sprague-Dawley , Weight Loss , Body Weight , Obesity/drug therapy , Glucagon-Like Peptide 1 , Glucose , Glucagon-Like Peptide-1 Receptor , Hypoglycemic Agents
SELECTION OF CITATIONS
SEARCH DETAIL
...