Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biol Rep ; 50(10): 8757-8762, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37541998

ABSTRACT

BACKGROUND: Khapra beetle (Dermestidae: Trogoderma granarium Everts, 1898) is an internationally significant pest of grain crops and stored grain products. Wheat germ traps, routinely used in surveillance sampling of Khapra beetle provide feed-substrates used by the pest throughout its life cycle. However, Khapra beetle larvae, eggs and other traces of the pest, such as larval frass and exuviae, in wheat germ traps are difficult to sort and taxonomically identify. Additionally, high levels of polysaccharides in wheat germ can inhibit PCR based molecular detection of this pest captured in the traps. METHODS AND RESULTS: We have developed a sensitive and low-cost protocol for extracting trace levels of Khapra beetle DNA from an entire wheat germ trap. Overnight digestion of entire trap contents in 6 mL of ATL buffer, followed by a 40 min lysis step was optimal for DNA extraction. Paired with reported qPCR assays, this protocol allows the detection of a few hairs of T. granarium in a typical 2-gram wheat germ trap. CONCLUSION: This DNA extraction protocol makes it possible to perform a more rapid identification of the pest following wheat germ sample collection. The protocol has potential to improve international efforts for Khapra beetle surveillance.


Subject(s)
Coleoptera , Animals , Coleoptera/genetics , Triticum/genetics , Larva , Edible Grain
2.
Molecules ; 24(10)2019 May 21.
Article in English | MEDLINE | ID: mdl-31117282

ABSTRACT

Small molecule discovery has benefitted from the development of technologies that have aided in the culture and identification of soil microorganisms and the subsequent analysis of their respective metabolomes. We report herein on the use of both culture dependent and independent approaches for evaluation of soil microbial diversity in the rhizosphere of canola, a crop known to support a diverse microbiome, including plant growth promoting rhizobacteria. Initial screening of rhizosphere soils showed that microbial diversity, particularly bacterial, was greatest at crop maturity; therefore organismal recovery was attempted with soil collected at canola harvest. Two standard media (Mueller Hinton and gellan gum) were evaluated following inoculation with soil aqueous suspensions and compared with a novel "rhizochip" prototype buried in a living canola crop rhizosphere for microbial culture in situ. Following successful recovery and identification of 375 rhizosphere microbiota of interest from all culture methods, isolates were identified by Sanger sequencing and/or characterization using morphological and biochemical traits. Three bacterial isolates of interest were randomly selected as case studies for intensive metabolic profiling. After successful culture in liquid media and solvent extraction, individual extracts were subjected to evaluation by UHPLC-DAD-QToF-MS, resulting in the rapid characterization of metabolites of interest from cultures of two isolates. After evaluation of key molecular features, unique or unusual bacterial metabolites were annotated and are reported herein.


Subject(s)
Biological Products/isolation & purification , DNA, Bacterial/genetics , Phylogeny , Rhizosphere , Bacteria/chemistry , Bacteria/genetics , Bacteria/isolation & purification , Biological Products/chemistry , DNA, Bacterial/isolation & purification , Metabolome/genetics , Metabolomics , Plant Roots/microbiology , RNA, Ribosomal, 16S/genetics , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...