Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Econ Entomol ; 115(5): 1564-1570, 2022 10 12.
Article in English | MEDLINE | ID: mdl-35980366

ABSTRACT

Soybean (Glycine max L.) is an important row crop in the United States and Helicoverpa zea (Boddie) is one of the most serious insect pests in this system. Economic thresholds for H. zea were developed from soybean varieties with determinate growth habits. However, southern USA farmers have recently planted more soybeans varieties with indeterminate growth habits. Trials were conducted with two determinate and two indeterminate varieties within the same relative maturity group. Levels were compared among groups with differing H. zea pressure (low, medium, high, naturally infested) and manipulated using insecticides. Our objectives were to evaluate yield compensation differences among determinate and indeterminate varieties at these different H. zea pressures and to see if the existing economic threshold should be adjusted between growth habits. Since H. zea larval populations varied across trials, we compared trials with low populations, high populations, and no population. Generally, larval counts did not differ among varieties. We found no yield differences among varieties or between growth habits, regardless of H. zea pressure. In the high population tests, yield was highest in the low population plots, but there was no compensation by the plant in yield components except in number of pods with one seed. In contrast, yield components varied widely across varieties, but these differences were independent of H. zea pressure. These results suggest the economic threshold can be used for determinate and indeterminate growth habits, but more research is needed to confirm this with a larger selection of varieties, planting dates, and maturity groups.


Subject(s)
Insecticides , Lepidoptera , Moths , Animals , Bacterial Proteins , Habits , Larva , Plants, Genetically Modified , Glycine max/genetics , Zea mays
2.
J Invertebr Pathol ; 183: 107560, 2021 07.
Article in English | MEDLINE | ID: mdl-33631194

ABSTRACT

Previous studies have reported that the corn earworm/bollworm, Helicoverpa zea (Boddie), has developed field resistance to pyramided Bacillus thuringiensis (Bt) Cry1A/Cry2A maize and cotton in certain areas of the southeastern United States. The objective of the current study was to determine the current status and distribution of the resistance to Cry1A.105 and Cry2Ab2 in H. zea. In the study, 31 H. zea populations were collected from major maize planting areas across seven southeastern states of the United States during 2018 and 2019 and assayed against the two Bt proteins. Diet over-lay bioassays showed that most of the populations collected during the two years were significantly resistant to the Cry1A.105 protein. Most of the populations collected during 2019 were also resistant to Cry2Ab2, while significant variances were observed in the susceptibility of the populations collected during 2018 to Cry2Ab2. The results showed that Cry1A.105 and Cry2Ab2 resistance in H. zea is widely distributed in the regions sampled. The resistance to Cry1A.105 appeared to have plateaued, while selection for Cry2Ab2 resistance is likely still occurring. Thus, effective measures for mitigating the Cry1A/Cry2A resistance need to be developed and implemented to ensure the sustainable use of Bt crop biotechnology.


Subject(s)
Bacillus thuringiensis Toxins/pharmacology , Bacillus thuringiensis/chemistry , Biological Control Agents/pharmacology , Endotoxins/pharmacology , Hemolysin Proteins/pharmacology , Insecticide Resistance , Insecticides/pharmacology , Moths/drug effects , Animals , Larva/drug effects , Larva/growth & development , Moths/growth & development , Southeastern United States
3.
Toxins (Basel) ; 13(1)2021 01 15.
Article in English | MEDLINE | ID: mdl-33467562

ABSTRACT

The corn earworm, Helicoverpa zea (Boddie), is a major pest targeted by pyramided Bacillus thuringiensis (Bt) corn and cotton in the U.S. Cry1Ab is one of the first insecticidal toxins used in Bt crops, while Vip3A is a relatively new toxin that has recently been incorporated into Cry corn with event MIR 162 and Cry cotton varieties to generate pyramided Bt traits targeting lepidopteran pests including H. zea. The objectives of this study were to determine the current status and distribution of the Cry1Ab resistance, and evaluate the susceptibility to Vip3Aa20 expressed in MIR 162 corn in H. zea in the southeastern U.S. During 2018 and 2019, 32 H. zea populations were collected from non-Bt corn (19 populations), Cry corn (12), and Cry/Vip3A cotton (1) across major corn areas in seven southeastern states of the U.S. Susceptibility of these populations to Cry1Ab and Vip3Aa20 was determined using diet-overlay bioassays. Compared to a known susceptible insect strain, 80% of the field populations were 13- to >150-fold resistant to Cry1Ab, while their response to Vip3Aa20 ranged from >11-fold more susceptible to 9-fold more tolerant. Mean susceptibility to each Bt toxin was not significantly different between the two groups of the populations collected from non-Bt and Bt crops, as well as between the two groups of the populations collected during 2018 and 2019. The results show that resistance to Cry1Ab in H. zea is widely distributed across the region. However, the Cry1Ab-resistant populations are not cross-resistant to Vip3Aa20, and H. zea in the region is still susceptible to the Vip3Aa20 toxin. Vip3Aa20 concentrations between 5 and 10 µg/cm2 may be used as diagnostic concentrations for susceptibility monitoring in future. Additional studies are necessary to elucidate the impact of the selection with Bt corn on resistance evolution in H. zea to Vip3A cotton in the U.S.


Subject(s)
Bacillus thuringiensis Toxins/metabolism , Bacterial Proteins/metabolism , Endotoxins/metabolism , Hemolysin Proteins/metabolism , Moths , Pest Control, Biological , Zea mays/metabolism , Animals , Bacillus thuringiensis , Biological Monitoring , Crops, Agricultural/metabolism , Genes, Bacterial , Larva , Lethal Dose 50 , Plants, Genetically Modified/metabolism , United States , Zea mays/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...