Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunol ; 183(9): 5816-22, 2009 Nov 01.
Article in English | MEDLINE | ID: mdl-19812197

ABSTRACT

Our aim was to elucidate the contribution of mucosal mast cells to the effector phase of a secondary immune response to Trichinella spiralis. During secondary infection, rats expel 90-99% of T. spiralis first-stage larvae from the intestine in a matter of hours. This phenomenon appears to be unique to rats and has been called rapid expulsion. Primary intestinal infection by T. spiralis induces mastocytosis, and mast cell degranulation occurs when challenged rats exhibit rapid expulsion. These observations have engendered the view that mast cells mediate rapid expulsion. In this study, we report that immunization of adult Albino Oxford rats by an infection limited to the muscle phase did not induce intestinal mastocytosis, yet such rats exhibited rapid expulsion when challenged orally. Although mastocytosis was absent, the protease unique to mucosal mast cells, rat mast cell protease II (RMCPII), was detected in sera at the time of expulsion. We further evaluated mast cell activity in neonatal rats that display rapid expulsion. Pups born to infected dams displayed rapid expulsion, and RMCPII was detected in their sera. By feeding pups parasite-specific mAbs or polyclonal Abs before challenge infection, it was possible to dissociate mast cell degranulation from parasite expulsion. These results indicate that rapid expulsion can occur in the absence of either intestinal mastocytosis or RMCPII release. Furthermore, release of RMCPII is not sufficient to cause expulsion. The data argue against a role for mast cells in the mechanism underlying the effector phase of protective immunity against T. spiralis in rats.


Subject(s)
Chymases/metabolism , Intestinal Mucosa/enzymology , Intestinal Mucosa/immunology , Mast Cells/enzymology , Mast Cells/immunology , Trichinella spiralis/immunology , Trichinellosis/enzymology , Trichinellosis/immunology , Animals , Cell Degranulation/immunology , Chymases/blood , Intestinal Mucosa/metabolism , Intestinal Mucosa/parasitology , Larva/growth & development , Larva/immunology , Male , Mast Cells/metabolism , Mastocytosis/enzymology , Mastocytosis/immunology , Mastocytosis/parasitology , Rats , Rats, Inbred Strains , Rats, Nude , Trichinella spiralis/growth & development , Trichinellosis/parasitology
2.
Gastroenterology ; 133(6): 1979-88, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18054569

ABSTRACT

BACKGROUND & AIMS: Diet-induced obesity results from increased ingestion of energy-dense food and sedentary lifestyle in genetically susceptible individuals. An environmental factor that may have shaped our energy homeostasis throughout evolution is parasitic nematode infection. METHODS: To test the hypothesis that a metabolically "thrifty phenotype" is advantageous during intestinal nematode infection, we compared the responses to Heligmosomoides polygyrus infection between 2 mouse strains: obesity-prone C57Bl/6J vs obesity-resistant SWR/J. Metabolic phenotyping was performed using indirect calorimetry, dual energy x-ray absorptiometry, and magnetic resonance imaging scanning. Gene expression was assessed by quantitative reverse-transcription polymerase chain reaction and immunohistochemistry. RESULTS: Body weight was maintained in both strains during nematode infection via different mechanisms. There was no apparent change in energy expenditure between the strains; however, SWR/J mice exhibited a marked hyperphagia (calorie intake 60% higher than C57Bl/6J) to maintain body weight. The importance of hyperphagia was confirmed by severe weight loss in a group of infected SWR/J mice whose food intake was restricted to that of naïve mice. Furthermore, SWR/J mice expelled nematodes more rapidly than C57Bl/6J mice, an effect related to a T helper cell 2 immune response. CONCLUSIONS: C57Bl/6J mice are more energy efficient during parasitic nematode infection, which may explain their ability to tolerate the infection. SWR/J mice, on the other hand, require an increase in food intake to maintain energy stores during nematode infection. In addition, a strong T helper cell 2-mediated immune response that facilitates a prompt clearance of nematode infection in SWR/J mice may have evolved to conserve energy in this strain.


Subject(s)
Intestinal Diseases, Parasitic/physiopathology , Nematode Infections/physiopathology , Obesity/metabolism , Animals , Disease Models, Animal , Energy Metabolism , Intestinal Diseases, Parasitic/metabolism , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Male , Mice , Mice, Inbred C57BL , Nematode Infections/metabolism , Obesity/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...