Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
AJNR Am J Neuroradiol ; 43(12): 1777-1783, 2022 12.
Article in English | MEDLINE | ID: mdl-36423956

ABSTRACT

BACKGROUND AND PURPOSE: Reduced olfactory function is the symptom with the highest prevalence in coronavirus disease 2019 (COVID-19) with nearly 70% of infected individuals experiencing partial or total loss of their sense of smell at some point during the disease. The exact cause is not known, but beyond peripheral damage, studies have demonstrated insults to both the olfactory bulb and central olfactory brain areas. However, these studies often lack both baseline pre-COVID-19 assessments and control groups, and the effects could, therefore, simply reflect pre-existing risk factors. MATERIALS AND METHODS: Shortly before the COVID-19 outbreak, we completed an olfactory-focused study, which included structural MR brain images and a full clinical olfactory test. Opportunistically, we invited participants back 1 year later, including 9 participants who had experienced mild-to-moderate COVID-19 (C19+) and 12 who had not (C19-), creating a natural pre-post experiment with a control group. RESULTS: Despite C19+ participants reporting subjective olfactory dysfunction, few showed signs of objectively altered function. Critically, all except 1 individual in the C19+ group had reduced olfactory bulb volume (average reduction, 14.3%), but this did not amount to a significant statistical difference compared with the control group (2.3%) using inference statistics. We found no morphologic differences in olfactory brain areas but stronger functional connectivity between olfactory brain areas in the C19+ group at the postmeasure. CONCLUSIONS: Our data suggest that COVID-19 might cause long-term reduction in olfactory bulb volume and altered functional connectivity but with no discernible morphologic differences in cerebral olfactory regions.


Subject(s)
COVID-19 , Olfaction Disorders , Humans , COVID-19/complications , Olfaction Disorders/etiology , Smell , Risk Factors , Olfactory Bulb/diagnostic imaging
2.
Neuroimage ; 101: 547-54, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-25016138

ABSTRACT

Light adaptation is crucial for coping with the varying levels of ambient light. Using high-density electroencephalography (EEG), we investigated how adaptation to light of different colors affects brain responsiveness. In a within-subject design, sixteen young participants were adapted first to dim white light and then to blue, green, red, or white bright light (one color per session in a randomized order). Immediately after both dim and bright light adaptation, we presented brief light pulses and recorded event-related potentials (ERPs). We analyzed ERP response strengths and brain topographies and determined the underlying sources using electrical source imaging. Between 150 and 261 ms after stimulus onset, the global field power (GFP) was higher after dim than bright light adaptation. This effect was most pronounced with red light and localized in the frontal lobe, the fusiform gyrus, the occipital lobe and the cerebellum. After bright light adaptation, within the first 100 ms after light onset, stronger responses were found than after dim light adaptation for all colors except for red light. Differences between conditions were localized in the frontal lobe, the cingulate gyrus, and the cerebellum. These results indicate that very short-term EEG brain responses are influenced by prior light adaptation and the spectral quality of the light stimulus. We show that the early EEG responses are differently affected by adaptation to different colors of light which may contribute to known differences in performance and reaction times in cognitive tests.


Subject(s)
Adaptation, Ocular/physiology , Cerebellum/physiology , Cerebral Cortex/physiology , Color Perception/physiology , Electroencephalography/methods , Evoked Potentials, Visual/physiology , Adult , Female , Humans , Male , Random Allocation , Time Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...