Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 21245, 2023 12 01.
Article in English | MEDLINE | ID: mdl-38040798

ABSTRACT

Exhaled SARS-CoV-2-containing aerosols contributed significantly to the rapid and vast spread of covid-19. However, quantitative experimental data on the infectivity of such aerosols is missing. Here, we quantified emission rates of infectious viruses in exhaled aerosol from individuals within their first days after symptom onset from covid-19. Six aerosol samples from three individuals were culturable, of which five were successfully quantified using TCID50. The source strength of the three individuals was highest during singing, when they exhaled 4, 36, or 127 TCID50/s, respectively. Calculations with an indoor air transmission model showed that if an infected individual with this emission rate entered a room, a susceptible person would inhale an infectious dose within 6 to 37 min in a room with normal ventilation. Thus, our data show that exhaled aerosols from a single person can transmit covid-19 to others within minutes at normal indoor conditions.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Respiratory Aerosols and Droplets , Exhalation
2.
Respir Med ; 212: 107244, 2023 06.
Article in English | MEDLINE | ID: mdl-37062499

ABSTRACT

BACKGROUND: Welders are exposed to gas and particle emissions that can cause severe lung disease, such as chronic obstructive pulmonary disease (COPD), a leading cause of mortality and morbidity worldwide. It is difficult to detect COPD early and therefore mitigating measures may be delayed. The aim of this study was to investigate lung health in welders and evaluate new sensitive methods with potential to assess early onset pulmonary changes in occupational settings. METHODS: This study assessed the lung health and symptoms in active welders (n = 28) and controls (n = 17). Lung measurements were performed with standard spirometry and new methods: airspace dimension assessment (AiDA), oscillometry, blood serum biomarkers (club cell secretory protein 16, surfactant protein D, matrix metalloproteinases, fibroblast, hepatocyte growth factor, interleukins), and one urine biomarker (desmosine). RESULTS: According to spirometry measurements, all participants had normal lung function. However, prevalence of cough was significantly higher among welders compared with controls and lung changes were found in welders with the novel methods. Welders had significantly higher respiratory system resistance assessed with oscillometry, serum levels of metalloproteinases 9 and hepatocyte growth factor, compared with controls. Airspace dimensions were on average higher among welders compared with controls, but the difference was not significant. The number of welding years correlated with decreased respiratory system reactance and increased serum levels of matrix metalloproteinases 9, interleukin 6, and hepatocyte growth factor. Airspace dimension assessment indices were correlated with increasing levels of inflammatory markers and matrix metalloproteinases. CONCLUSIONS: This study indicated the potential to use new and more sensitive methods for identification of changes in lungs when standard spirometry failed to do so.


Subject(s)
Occupational Diseases , Occupational Exposure , Pulmonary Disease, Chronic Obstructive , Humans , Hepatocyte Growth Factor , Metal Workers , Respiratory Function Tests/methods , Lung , Pulmonary Disease, Chronic Obstructive/diagnosis , Occupational Diseases/epidemiology , Occupational Exposure/adverse effects
3.
Infect Dis (Lond) ; 55(2): 158-163, 2023 02.
Article in English | MEDLINE | ID: mdl-36331347

ABSTRACT

BACKGROUND: SARS-CoV-2 in exhaled aerosols is considered an important contributor to the spread of COVID-19. However, characterizing the size distribution of virus-containing aerosol particles has been challenging as high concentrations of SARS-CoV-2 in exhaled air is mainly present close to symptom onset. We present a case study of a person with COVID-19 who was able to participate in extensive measurements of exhaled aerosols already on the day of symptom onset and then for the following three days. METHODS: Aerosol collection was performed using an eight-stage impactor while the subject was breathing, talking and singing, for 30 min each, once every day. In addition, nasopharyngeal samples, saliva samples, room air samples and information on symptom manifestations were collected every day. Samples were analyzed by RT-qPCR for detection of SARS-CoV-2 RNA. RESULTS: SARS-CoV-2 RNA was detected in seven of the eight particle size fractions, from 0.34 to >8.1 µm, with the highest concentrations found in 0.94-2.8 µm particles. The concentration of SARS-CoV-2 RNA was highest on the day of symptom onset, and declined for each day thereafter. CONCLUSION: Our data showed that 90% of the exhaled SARS-CoV-2 RNA was found in aerosol particles <4.5 µm, indicating the importance of small particles for the transmission of COVID-19 close to symptom onset. These results are important for our understanding of airborne transmission, for developing accurate models and for selecting appropriate mitigation strategies.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , SARS-CoV-2/genetics , RNA, Viral , Respiratory Aerosols and Droplets
4.
Clin Infect Dis ; 75(1): e50-e56, 2022 08 24.
Article in English | MEDLINE | ID: mdl-35271734

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) transmission via exhaled aerosol particles has been considered an important route for the spread of infection, especially during super-spreading events involving loud talking or singing. However, no study has previously linked measurements of viral aerosol emissions to transmission rates. METHODS: During February-March 2021, COVID-19 cases that were close to symptom onset were visited with a mobile laboratory for collection of exhaled aerosol particles during breathing, talking, and singing, respectively, and of nasopharyngeal and saliva samples. Aerosol samples were collected using a BioSpot-VIVAS and a NIOSH bc-251 2-stage cyclone, and all samples were analyzed by RT-qPCR for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA detection. We compared transmission rates between households with aerosol-positive and aerosol-negative index cases. RESULTS: SARS-CoV-2 RNA was detected in at least 1 aerosol sample from 19 of 38 (50%) included cases. The odds ratio (OR) of finding positive aerosol samples decreased with each day from symptom onset (OR 0.55, 95 confidence interval [CI] .30-1.0, P = .049). The highest number of positive aerosol samples were from singing, 16 (42%), followed by talking, 11 (30%), and the least from breathing, 3 (8%). Index cases were identified for 13 households with 31 exposed contacts. Higher transmission rates were observed in households with aerosol-positive index cases, 10/16 infected (63%), compared to households with aerosol-negative index cases, 4/15 infected (27%) (χ2 test, P = .045). CONCLUSIONS: COVID-19 cases were more likely to exhale SARS-CoV-2-containing aerosol particles close to symptom onset and during singing or talking as compared to breathing. This study supports that individuals with SARS-CoV-2 in exhaled aerosols are more likely to transmit COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Family Characteristics , Humans , RNA, Viral , Respiratory Aerosols and Droplets
5.
Clin Infect Dis ; 75(1): e89-e96, 2022 08 24.
Article in English | MEDLINE | ID: mdl-35226740

ABSTRACT

BACKGROUND: Transmission of coronavirus disease 2019 (COVID-19) can occur through inhalation of fine droplets or aerosols containing infectious virus. The objective of this study was to identify situations, patient characteristics, environmental parameters, and aerosol-generating procedures (AGPs) associated with airborne severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. METHODS: Air samples were collected near hospitalized COVID-19 patients and analyzed by RT-qPCR. Results were related to distance to the patient, most recent patient diagnostic PCR cycle threshold (Ct) value, room ventilation, and ongoing potential AGPs. RESULTS: In total, 310 air samples were collected; of these, 26 (8%) were positive for SARS-CoV-2. Of the 231 samples from patient rooms, 22 (10%) were positive for SARS-CoV-2. Positive air samples were associated with a low patient Ct value (OR, 5.0 for Ct <25 vs >25; P = .01; 95% CI: 1.18-29.5) and a shorter physical distance to the patient (OR, 2.0 for every meter closer to the patient; P = .05; 95% CI: 1.0-3.8). A mobile HEPA-filtration unit in the room decreased the proportion of positive samples (OR, .3; P = .02; 95% CI: .12-.98). No association was observed between SARS-CoV-2-positive air samples and mechanical ventilation, high-flow nasal cannula, nebulizer treatment, or noninvasive ventilation. An association was found with positive expiratory pressure training (P < .01) and a trend towards an association for airway manipulation, including bronchoscopies and in- and extubations. CONCLUSIONS: Our results show that major risk factors for airborne SARS-CoV-2 include short physical distance, high patient viral load, and poor room ventilation. AGPs, as traditionally defined, seem to be of secondary importance.


Subject(s)
COVID-19 , SARS-CoV-2 , Hospitals , Humans , Physical Distancing , Respiratory Aerosols and Droplets , Viral Load
6.
Article in English | MEDLINE | ID: mdl-33809366

ABSTRACT

Transmission of respiratory viruses is a complex process involving emission, deposition in the airways, and infection. Inhalation is often the most relevant transmission mode in indoor environments. For severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the risk of inhalation transmission is not yet fully understood. Here, we used an indoor aerosol model combined with a regional inhaled deposited dose model to examine the indoor transport of aerosols from an infected person with novel coronavirus disease (COVID-19) to a susceptible person and assess the potential inhaled dose rate of particles. Two scenarios with different ventilation rates were compared, as well as adult female versus male recipients. Assuming a source strength of 10 viruses/s, in a tightly closed room with poor ventilation (0.5 h-1), the respiratory tract deposited dose rate was 140-350 and 100-260 inhaled viruses/hour for males and females; respectively. With ventilation at 3 h-1 the dose rate was only 30-90 viruses/hour. Correcting for the half-life of SARS-CoV-2 in air, these numbers are reduced by a factor of 1.2-2.2 for poorly ventilated rooms and 1.1-1.4 for well-ventilated rooms. Combined with future determinations of virus emission rates, the size distribution of aerosols containing the virus, and the infectious dose, these results could play an important role in understanding the full picture of potential inhalation transmission in indoor environments.


Subject(s)
COVID-19 , Coronavirus Infections , Coronavirus , Aerosols , Female , Humans , Male , SARS-CoV-2
7.
J Clin Oncol ; 39(7): 757-767, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33296242

ABSTRACT

PURPOSE: Melphalan flufenamide (melflufen) is a first-in-class peptide-drug conjugate that targets aminopeptidases and rapidly and selectively releases alkylating agents into tumor cells. The phase II HORIZON trial evaluated the efficacy of melflufen plus dexamethasone in relapsed and refractory multiple myeloma (RRMM), a population with an important unmet medical need. PATIENTS AND METHODS: Patients with RRMM refractory to pomalidomide and/or an anti-CD38 monoclonal antibody received melflufen 40 mg intravenously on day 1 of each 28-day cycle plus once weekly oral dexamethasone at a dose of 40 mg (20 mg in patients older than 75 years). The primary end point was overall response rate (partial response or better) assessed by the investigator and confirmed by independent review. Secondary end points included duration of response, progression-free survival, overall survival, and safety. The primary analysis is complete with long-term follow-up ongoing. RESULTS: Of 157 patients (median age 65 years; median five prior lines of therapy) enrolled and treated, 119 patients (76%) had triple-class-refractory disease, 55 (35%) had extramedullary disease, and 92 (59%) were refractory to previous alkylator therapy. The overall response rate was 29% in the all-treated population, with 26% in the triple-class-refractory population. In the all-treated population, median duration of response was 5.5 months, median progression-free survival was 4.2 months, and median overall survival was 11.6 months at a median follow-up of 14 months. Grade ≥ 3 treatment-emergent adverse events occurred in 96% of patients, most commonly neutropenia (79%), thrombocytopenia (76%), and anemia (43%). Pneumonia (10%) was the most common grade 3/4 nonhematologic event. Thrombocytopenia and bleeding (both grade 3/4 but fully reversible) occurred concomitantly in four patients. GI events, reported in 97 patients (62%), were predominantly grade 1/2 (93%); none were grade 4. CONCLUSION: Melflufen plus dexamethasone showed clinically meaningful efficacy and a manageable safety profile in patients with heavily pretreated RRMM, including those with triple-class-refractory and extramedullary disease.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Dexamethasone/therapeutic use , Melphalan/analogs & derivatives , Multiple Myeloma/drug therapy , Phenylalanine/analogs & derivatives , Adult , Aged , Aged, 80 and over , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Dexamethasone/adverse effects , Disease Progression , Drug Resistance, Neoplasm , Europe , Female , Humans , Male , Melphalan/adverse effects , Melphalan/therapeutic use , Middle Aged , Multiple Myeloma/mortality , Multiple Myeloma/pathology , Phenylalanine/adverse effects , Phenylalanine/therapeutic use , Progression-Free Survival , Recurrence , Time Factors , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...