Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Opt Express ; 28(4): 4845-4858, 2020 Feb 17.
Article in English | MEDLINE | ID: mdl-32121716

ABSTRACT

From P-SHG experiments, second-order nonlinear optical anisotropy parameters ρ = χZZZ/χZXX of collagen tissues are calculated assuming the same model of supercoiled collagen fibril characterized by a variable angle θ. Dispersion of experimental ρ values is converted into distribution of θ values based on the wavy nature of collagen fibrils deduced from EM studies. For tendon, the results show that the dispersion of experimental ρ values is mainly due to Poisson photonic shot noise assuming a slight fibrillar undulation with θ = 2.2° ± 1.8°. However for skin and vessels, the dispersion of experimental ρ values is mainly due to a stronger fibrillar undulation with θ = 16.2° ± 1.3°. The results highlight that this undulation is reduced during the development of liver fibrosis therefore, contributing to the rigidity of the tissue.


Subject(s)
Fibrillar Collagens/chemistry , Nonlinear Dynamics , Animals , Anisotropy , Computer Simulation , Image Processing, Computer-Assisted , Mice, Inbred C57BL , Rats
2.
Eur J Nutr ; 59(4): 1619-1632, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31161349

ABSTRACT

PURPOSE: Several clinical studies suggested that light-to-moderate alcohol intake could alleviate nonalcoholic fatty liver disease (NAFLD), but the underlying mechanism is still poorly understood. METHODS: Mice fed a high-fat diet (HFD) were submitted or not to moderate ethanol intake for 3 months (ca. 10 g/kg/day) via drinking water. Biochemical, analytical and transcriptomic analyses were performed in serum and liver. RESULTS: Serum ethanol concentrations in ethanol-treated HFD mice comprised between 0.5 and 0.7 g/l throughout the experiment. NAFLD improvement was observed in ethanol-treated HFD mice as assessed by reduced serum transaminase activity. This was associated with less microvesicular and more macrovacuolar steatosis, the absence of apoptotic hepatocytes and a trend towards less fibrosis. Liver lipid analysis showed increased amounts of fatty acids incorporated in triglycerides and phospholipids, reduced proportion of palmitic acid in total lipids and higher desaturation index, thus suggesting enhanced stearoyl-coenzyme A desaturase activity. mRNA expression of several glycolytic and lipogenic enzymes was upregulated. Genome-wide expression profiling and gene set enrichment analysis revealed an overall downregulation of the expression of genes involved in collagen fibril organization and leukocyte chemotaxis and an overall upregulation of the expression of genes involved in oxidative phosphorylation and mitochondrial respiratory chain complex assembly. In addition, mRNA expression of several proteasome subunits was upregulated in ethanol-treated HFD mice. CONCLUSIONS: Moderate chronic ethanol consumption may alleviate NAFLD by several mechanisms including the generation of non-toxic lipid species, reduced expression of profibrotic and proinflammatory genes, restoration of mitochondrial function and possible stimulation of proteasome activity.


Subject(s)
Diet, High-Fat , Ethanol/blood , Ethanol/pharmacology , Fatty Acids, Monounsaturated/blood , Non-alcoholic Fatty Liver Disease/prevention & control , Triglycerides/blood , Animals , Disease Models, Animal , Ethanol/administration & dosage , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/blood
3.
Sci Rep ; 7(1): 12197, 2017 09 22.
Article in English | MEDLINE | ID: mdl-28939903

ABSTRACT

Polarization dependence second harmonic generation (P-SHG) microscopy is gaining increase popularity for in situ quantification of fibrillar protein architectures. In this report, we combine P-SHG microscopy, new linear least square (LLS) fitting and modeling to determine and convert the complex second-order non-linear optical anisotropy parameter ρ of several collagen rich tissues into a simple geometric organization of collagen fibrils. Modeling integrates a priori knowledge of polyhelical organization of collagen molecule polymers forming fibrils and bundles of fibrils as well as Poisson photonic shot noise of the detection system. The results, which accurately predict the known sub-microscopic hierarchical organization of collagen fibrils in several tissues, suggest that they can be subdivided into three classes according to their microscopic and macroscopic hierarchical organization of collagen fibrils. They also show, for the first time to our knowledge, intrahepatic spatial discrimination between genuine fibrotic and non-fibrotic vessels. CCl4-treated livers are characterized by an increase in the percentage of fibrotic vessels and their remodeling involves peri-portal compaction and alignment of collagen fibrils that should contribute to portal hypertension. This integrated P-SHG image analysis method is a powerful tool that should open new avenue for the determination of pathophysiological and chemo-mechanical cues impacting collagen fibrils organization.


Subject(s)
Fibrillar Collagens/metabolism , Imaging, Three-Dimensional/methods , Liver Cirrhosis/diagnostic imaging , Microscopy, Polarization/methods , Second Harmonic Generation Microscopy/methods , Animals , Carbon Tetrachloride/toxicity , Disease Models, Animal , Extracellular Matrix/chemistry , Extracellular Matrix/pathology , Fibrillar Collagens/chemistry , Liver/diagnostic imaging , Liver/drug effects , Liver/pathology , Liver Cirrhosis/chemically induced , Liver Cirrhosis/pathology , Mice , Mice, Inbred C57BL , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/pathology , Protein Multimerization , Protein Structure, Quaternary , Rats , Rats, Wistar
4.
Toxicol Lett ; 255: 1-10, 2016 Jul 25.
Article in English | MEDLINE | ID: mdl-26853152

ABSTRACT

Chronic liver damage due to viral or chemical agents leads to a repair process resulting in hepatic fibrosis. Fibrosis may lead to cirrhosis, which may progress to liver cancer or a loss of liver function, with an associated risk of liver failure and death. Chlordecone is a chlorinated pesticide used in the 1990s. It is not itself hepatotoxic, but its metabolism in the liver triggers hepatomegaly and potentiates hepatotoxic agents. Chlordecone is now banned, but it persists in soil and water, resulting in an ongoing public health problem in the Caribbean area. We assessed the probable impact of chlordecone on the progression of liver fibrosis in the population of contaminated areas, by developing a mouse model of chronic co-exposure to chlordecone and a hepatotoxic agent, carbon tetrachloride (CCl4). After repeated administrations of chlordecone and CCl4 by gavage over a 12-week period, we checked for liver damage in the exposed mice, by determining serum liver transaminase (AST, ALT) levels, histological examinations of the liver and measuring the expression of genes encoding extracellular matrix components. The co-exposure of mice to CCl4 and chlordecone resulted in significant increases in ALT and AST levels. Chlordecone also increased expression of the Col1A2, MMP-2, TIMP-1 and PAI-1 genes in CCl4-treated mice. Finally, we demonstrated, by quantifying areas of collagen deposition and alpha-SMA gene expression, that chlordecone potentiated the hepatic fibrosis induced by CCl4. In conclusion, our data suggest that chlordecone potentiates hepatic fibrosis in mice with CCl4-induced chronic liver injury.


Subject(s)
Carbon Tetrachloride , Chemical and Drug Induced Liver Injury, Chronic/etiology , Chlordecone/toxicity , Insecticides/toxicity , Liver Cirrhosis, Experimental/chemically induced , Liver/drug effects , Alanine Transaminase/blood , Animals , Aspartate Aminotransferases/blood , Biomarkers/blood , Chemical and Drug Induced Liver Injury, Chronic/genetics , Chemical and Drug Induced Liver Injury, Chronic/metabolism , Chemical and Drug Induced Liver Injury, Chronic/pathology , Disease Progression , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Gene Expression Regulation , Liver/metabolism , Liver/pathology , Liver Cirrhosis, Experimental/genetics , Liver Cirrhosis, Experimental/metabolism , Liver Cirrhosis, Experimental/pathology , Male , Mice, Inbred C57BL , Time Factors
5.
J Cell Biochem ; 117(3): 708-20, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26331987

ABSTRACT

Mechanical forces influence the growth and shape of virtually all tissues and organs. Recent studies show that increased cell contractibility, growth and differentiation might be normalized by modulating cell tensions. Particularly, the role of these tensions applied by the extracellular matrix during liver fibrosis could influence the hepatocarcinogenesis process. The objective of this study is to determine if 3D stiffness could influence growth and phenotype of normal and transformed hepatocytes and to integrate extracellular matrix (ECM) stiffness to tensional homeostasis. We have developed an appropriate 3D culture model: hepatic cells within three-dimensional collagen matrices with varying rigidity. Our results demonstrate that the rigidity influenced the cell phenotype and induced spheroid clusters development whereas in soft matrices, Huh7 transformed cells were less proliferative, well-spread and flattened. We confirmed that ERK1 played a predominant role over ERK2 in cisplatin-induced death, whereas ERK2 mainly controlled proliferation. As compared to 2D culture, 3D cultures are associated with epithelial markers expression. Interestingly, proliferation of normal hepatocytes was also induced in rigid gels. Furthermore, biotransformation activities are increased in 3D gels, where CYP1A2 enzyme can be highly induced/activated in primary culture of human hepatocytes embedded in the matrix. In conclusion, we demonstrated that increasing 3D rigidity could promote proliferation and spheroid developments of liver cells demonstrating that 3D collagen gels are an attractive tool for studying rigidity-dependent homeostasis of the liver cells embedded in the matrix and should be privileged for both chronic toxicological and pharmacological drug screening.


Subject(s)
Cell Proliferation , Culture Media/chemistry , Hepatocytes/physiology , Spheroids, Cellular/physiology , Animals , Cell Culture Techniques , Cell Differentiation , Cell Line, Tumor , Cell Survival , Collagen/chemistry , Gels , Hardness , Humans , Liver Cirrhosis/pathology , MAP Kinase Signaling System , Rats
6.
Opt Express ; 23(10): 13309-19, 2015 May 18.
Article in English | MEDLINE | ID: mdl-26074581

ABSTRACT

A linear least square (LLS) method is proposed to process polarization dependent SHG intensity analysis at pixel-resolution level in order to provide an analytic solution of nonlinear susceptibility χ(2) coefficients and of fibril orientation. This model is applicable to fibrils with identical orientation in the excitation volume. It has been validated on type I collagen fibrils from cell-free gel, tendon and extracellular matrix of F1 biliary epithelial cells. LLS is fast (a few hundred milliseconds for a 512 × 512 pixel image) and very easy to perform for non-expert in numerical signal processing. Theoretical simulation highlights the importance of signal to noise ratio for accurate determination of nonlinear susceptibility χ(2) coefficients. The results also suggest that, in addition to the peptide group, a second molecular nonlinear optical hyperpolarizability ß contributes to the SHG signal. Finally from fibril orientation analysis, results show that F1 cells remodel extracellular matrix collagen fibrils by changing fibril orientation, which might have important physiological function in cell migration and communication.

7.
J Struct Biol ; 190(1): 1-10, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25770062

ABSTRACT

Second harmonic generation (SHG) microscopy is a powerful tool for studying submicron architecture of muscles tissues. Using this technique, we show that the canonical single frequency sarcomeric SHG intensity pattern (SHG-IP) of premetamorphic xenopus tadpole tail muscles is converted to double frequency (2f) sarcomeric SHG-IP in metamorphic climax stages due to massive physiological muscle proteolysis. This conversion was found to rise from 7% in premetamorphic muscles to about 97% in fragmented muscular apoptotic bodies. Moreover a 66% conversion was also found in non-fragmented metamorphic tail muscles. Also, a strong correlation between predominant 2f sarcomeric SHG-IPs and myofibrillar misalignment is established with electron microscopy. Experimental and theoretical results demonstrate the higher sensitivity and the supra resolution power of SHG microscopy over TPEF to reveal 3D myofibrillar misalignment. From this study, we suggest that 2f sarcomeric SHG-IP could be used as signature of triad defect and disruption of excitation-contraction coupling. As the mechanism of muscle proteolysis is similar to that found in mdx mouse muscles, we further suggest that xenopus tadpole tail resorption at climax stages could be used as an alternative or complementary model of Duchene muscular dystrophy.


Subject(s)
Muscle, Skeletal/ultrastructure , Xenopus laevis/anatomy & histology , Animals , Larva/growth & development , Larva/ultrastructure , Muscle, Skeletal/growth & development , Tail/growth & development , Tail/ultrastructure , Xenopus Proteins/ultrastructure , Xenopus laevis/growth & development
8.
Biomed Opt Express ; 5(3): 858-75, 2014 Mar 01.
Article in English | MEDLINE | ID: mdl-24688819

ABSTRACT

We show that the canonical single frequency sarcomeric SHG intensity pattern (SHG-IP) of control muscles is converted to double frequency sarcomeric SHG-IP in preserved mdx mouse gastrocnemius muscles in the vicinity of necrotic fibers. These double frequency sarcomeric SHG-IPs are often spatially correlated to double frequency sarcomeric two-photon excitation fluorescence (TPEF) emitted from Z-line and I-bands and to one centered spot SHG angular intensity pattern (SHG-AIP) suggesting that these patterns are signature of myofibrillar misalignement. This latter is confirmed with transmission electron microscopy (TEM). Moreover, a good spatial correlation between SHG signature of myofibrillar misalignment and triad reduction is established. Theoretical simulation of sarcomeric SHG-IP is used to demonstrate the correlation between change of SHG-IP and -AIP and myofibrillar misalignment. The extreme sensitivity of SHG microscopy to reveal the submicrometric organization of A-band thick filaments is highlighted. This report is a first step toward future studies aimed at establishing live SHG signature of myofibrillar misalignment involving excitation contraction defects due to muscle damage and disease.

9.
Opt Express ; 21(9): 11404-14, 2013 May 06.
Article in English | MEDLINE | ID: mdl-23669997

ABSTRACT

We present a theoretical simulation of the sarcomeric SHG intensity pattern (SHG-IP) that takes into account myofibrillar misalignment that is experimentally observed in SHG images of proteolysed muscles. The model predicts that myofibrillar displacement results in the conversion from one peak (1P) to two peaks (2P) sarcomeric SHG-IP in agreement with experimental results. This study suggests that sarcomeric SHG-IP is a powerful tool for mapping spatial myofibrillar displacement and its related excitation-contraction disruption that could occur during muscle physiological adaptation and disease.


Subject(s)
Artifacts , Image Interpretation, Computer-Assisted/methods , Microscopy/methods , Movement/physiology , Muscle Contraction/physiology , Sarcomeres/physiology , Sarcomeres/ultrastructure , Humans
10.
Biophys J ; 104(9): 1959-68, 2013 May 07.
Article in English | MEDLINE | ID: mdl-23663839

ABSTRACT

SHG angular intensity pattern (SHG-AIP) of healthy and proteolysed muscle tissues are simulated and imaged here for the first time to our knowledge. The role of the spatial distribution of second-order nonlinear emitters on SHG-AIP is highlighted. SHG-AIP with two symmetrical spots is found to be a signature of healthy muscle whereas SHG-AIP with one centered spot in pathological mdx muscle is found to be a signature of myofibrillar disorder. We also show that SHG-AIP provides information on the three-dimensional structural organization of myofibrils in physiological and proteolysed muscle. Our results open an avenue for future studies aimed at unraveling more complex physiological and pathological fibrillar tissues organization.


Subject(s)
Models, Biological , Muscle, Skeletal/ultrastructure , Animals , Microscopy, Confocal , Muscle, Skeletal/metabolism , Proteolysis , Scanning Laser Polarimetry , Xenopus laevis
11.
Biophys J ; 101(2): 494-503, 2011 Jul 20.
Article in English | MEDLINE | ID: mdl-21767503

ABSTRACT

A theoretical far-field second harmonic generation (SHG) imaging radiation pattern is calculated for muscular myosin taking into account both Gouy effect and light diffraction under high focusing excitation. Theoretical analysis, in agreement with experimental results obtained on healthy Xenopus muscles, shows that the increase on intensity at the middle of the sarcomeric SHG intensity pattern is generated by an off-axis constructive interference related to the specific antipolar distribution of myosin molecules within the sarcomere. The best fit of the experimental sarcomeric SHG intensity pattern was obtained with an estimated size of antiparallel, intrathick filaments' packing-width of 115 ± 25 nm localized at the M-band. During proteolysis, experimental sarcomeric SHG intensity pattern exhibits decrease on intensity at the center of the sarcomere. An effective intra- and interthick filaments centrosymmetry of 320 ± 25 nm, in agreement with ultrastructural disorganization observed at the electron microscopy level, was necessary to fit the experimental sarcomeric SHG intensity pattern. Our results show that sarcomeric SHG intensity pattern is very sensitive to misalignment of thick filaments and highlights the potential usefulness of SHG microscopy to diagnose proteolysis-induced muscular disorders.


Subject(s)
Models, Biological , Muscle, Skeletal/anatomy & histology , Sarcomeres/physiology , Animals , Larva/anatomy & histology , Larva/physiology , Larva/ultrastructure , Lasers , Muscle, Skeletal/ultrastructure , Sarcomeres/ultrastructure , Xenopus
12.
Biomed Opt Express ; 2(2): 374-84, 2011 Jan 19.
Article in English | MEDLINE | ID: mdl-21339882

ABSTRACT

Femtosecond laser at 780 nm excitation wavelength was used to photo-convert the physiological sarcomeric single band (SB) second harmonic generation (SHG) pattern into double band (DB) in Xenopus laevis premetamorphic tail muscles. This photo-conversion was found to be a third order non-linear optical process and was drastically reduced at 940 nm excitation wavelength. This effect was no longer observed in paraformaldehyde fixed muscles and was enhanced by hydrogen peroxide. The action of hydrogen peroxide suggests that reactive oxygen species (ROS) could contribute to this photo-conversion. These results demonstrate that sarcomeric DB SHG pattern is a marker of sarcomere photodamage in xenopus tadpole muscles and highlight the need of being very careful at using two-photon excitation while observing living tissues. Moreover they open new avenues for in situ intravital investigation of oxidative stress effects in muscle dysfunctions and diseases.

13.
Opt Express ; 17(22): 19763-77, 2009 Oct 26.
Article in English | MEDLINE | ID: mdl-19997197

ABSTRACT

We have extensively characterized the sarcomeric SHG signal as a function of animal species (rat versus xenopus), age (adult versus larval) and tissue preparation (fixed or fresh) and we found that the main feature of this signal is a single peak per mature sarcomere (about 85% of all sarcomeres). The remaining (15%) was found to be either double peak per mature sarcomere or mini sarcomeres (half of a sarcomere) using alpha-actinin immuno detection of the Z-band. The mini sarcomeres are often found in region of pitchfork-like SHG pattern. We suggest that double peak SHG pattern could indicate regions of sarcomeric proteolysis whereas pitchfork-like SHG pattern could reveal sarcomeric assembly.


Subject(s)
Aging/pathology , Image Enhancement/methods , Microscopy/methods , Muscle, Skeletal/cytology , Sarcomeres/ultrastructure , Animals , Mice , Species Specificity , Xenopus laevis
14.
Transgenic Res ; 18(5): 815-27, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19404763

ABSTRACT

Combining two existing protocols of trangenesis, namely the REMI and the I-SceI meganuclease methods, we generated Xenopus leavis expressing a transgene under the control of a promoter that presented a restricted pattern of activity and a low level of expression. This was realized by co-incubating sperm nuclei, the I-SceI enzyme and the transgene prior to transplantation into unfertilized eggs. The addition of the woodchuck hepatitis virus posttranscriptional regulatory element in our constructs further enhanced the expression of the transgene without affecting the tissue-specificity of the promoter activity. Using this combination of methods we produced high rates of fully transgenic animals that stably transmitted the transgene to the next generations with a transmission rate of 50% indicating a single integration event.


Subject(s)
Transgenes , Xenopus laevis/genetics , Animals , Animals, Genetically Modified , Basic Helix-Loop-Helix Transcription Factors/genetics , Hepatitis B Virus, Woodchuck/genetics , Nerve Tissue Proteins/genetics , Promoter Regions, Genetic
15.
Opt Express ; 15(19): 12286-95, 2007 Sep 17.
Article in English | MEDLINE | ID: mdl-19547597

ABSTRACT

We performed Second Harmonic Generation (SHG) imaging microscopy of endogeneous myosin-rich and collagen-rich tissues in amphibian and mammals. We determined the relative components of the macroscopic susceptibility tensor chi((2)) from polarization dependence of SHG intensity. The effective orientation angle theta(e) of the harmonophores has been determined for each protein. For myosin we found theta(e) approximately 62 degrees and this value was unchanged during myofibrillogenesis. It was also independent of the animal species (xenopus, dog and human). For collagen we found theta(e) approximately 49 degrees for both type I- and type III- rich tissues. From these results we localized the source of SHG along the single helix of both myosin and collagen.

16.
Neurosci Lett ; 365(3): 228-32, 2004 Jul 29.
Article in English | MEDLINE | ID: mdl-15246554

ABSTRACT

Voltage-gated calcium currents are important for the survival and growth of embryonic cockroach brain neurons in primary culture. In the present experiments, we have studied, using the patch-clamp technique, the evolution with time in culture of the voltage-dependency and of the pharmacological properties of the calcium conductance of these neurons during the formation of a network. We have observed a progressive increase of the high-voltage-activated calcium conductance and a 10mV shift of the voltage-dependency of activation towards more negative potentials. The proportion of the R-like calcium current component increased during network formation. At the same time, the highly omega-AgaTxIVA-sensitive P-like component of the current is progressively replaced by a component which is less sensitive to the toxin. The origin and functional implications of these modifications are discussed.


Subject(s)
Brain/physiology , Calcium Channels, P-Type/physiology , Calcium Channels, R-Type/physiology , Ion Channel Gating , Neurons/physiology , Animals , Brain/cytology , Brain/embryology , Cells, Cultured , Patch-Clamp Techniques , Periplaneta
17.
J Neurophysiol ; 88(3): 1475-90, 2002 Sep.
Article in English | MEDLINE | ID: mdl-12205168

ABSTRACT

The contribution of voltage-gated calcium channels (VGCC) to the development of cultured embryonic cockroach brain neurons was assessed using pharmacological agents. VGCC currents were recorded using the patch-clamp technique and were found to be blocked dose-dependently by micromolar concentrations of mibefradil. The activation and inactivation properties of the calcium channels enable a sizeable calcium current to flow at rest (about -30 and -20 mV in high-potassium culture media). As expected, the cytoplasmic-free calcium concentration was found to rise when the extracellular potassium concentration was raised from 3 to 15 and 30 mM. The effects of VGCC blockers and calcium chelators were different in fresh and in mature cultures in which the neurons were connected to each other to form a defined network. In fresh cultures, the two non-selective VGCC blockers (verapamil and mibefradil) induced a dose-dependent cell death that was proportional to their blocking effect on I(Ba). This effect could not be prevented by addition of fetal calf serum to the culture medium. A similar effect was obtained using intra- or extracellular calcium chelating agents (10 microM BAPTA-AM or 10 mM EGTA). Quite unexpectedly, blockade of the P/Q-like (omega-Aga WA-sensitive) component of the calcium current by 500 nM of omega-AgaTx IVA had no lethal effect, suggesting that the corresponding channels are not involved in the survival mechanism. As expected from their lack of effect on I(Ba), isradipine, nifedipine, and omega-CgTx GVIA did not induce cell death. When the neurons started growing neurites, their sensitivity to calcium channel blockade by mibefradil decreased, indicating a correlation between neurite outgrowth and resistance to calcium depletion. In mature cultures, the neurons became resistant to mibefradil, verapamil, and BAPTA-AM. However, these agents, as well as omega-AgaTx IVA, had a significant inhibitory effect on the increase in diameter of the connectives that linked adjacent clusters of neurons. This effect has been shown to result, in the case of mibefradil, from an inhibition of neurite outgrowth characterized by a significant reduction of the number of primary neurites and secondary branchings but not to a significant modification of the diameter of individual neurites. These results support the view that, as in vertebrates, calcium influx through VGCC plays an important role in survival and neurite outgrowth of cultured embryonic insect neurons. The differential contribution of the P/Q-like and R-like (omega-Aga WA-sensitive) calcium channels in these processes is discussed.


Subject(s)
Brain/embryology , Calcium Channels/physiology , Cockroaches/embryology , Egtazic Acid/analogs & derivatives , Neurites/physiology , Neurons/physiology , Animals , Brain/cytology , Calcium Channel Blockers/pharmacology , Calcium Channels/drug effects , Cell Survival/drug effects , Cell Survival/physiology , Cells, Cultured , Chelating Agents/pharmacology , Culture Media , Egtazic Acid/pharmacology , Electric Conductivity , Embryo, Nonmammalian/physiology , Mibefradil/pharmacology , Neurites/drug effects , Potassium/administration & dosage , Potassium/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...