Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Molecules ; 28(19)2023 Oct 08.
Article in English | MEDLINE | ID: mdl-37836824

ABSTRACT

The ternary composite MgO@ZnO@BC was synthesized and characterized for the adsorption of Cu2+, Pb2+ heavy metal ions from wastewater. The results show that the addition of the MgO@ZnO@BC composite results in higher adsorption properties for Cu2+ and Pb2+, with a molar ratio of 5% 0.1 g, and maximum adsorption capacity (50.63 mg/g for Cu2+ and 61.46 mg/g for Pb2+). The Langmuir adsorption isotherm of the adsorption complex and the kinetics of adsorption are secondary kinetics. The adsorption of Cu2+ and Pb2+ was mainly chemisorption, accompanied by physical adsorption. This adsorption method fully conforms to the concepts of clean production and efficient waste utilization, providing a reference for the removal of heavy metal ions from wastewater and waste recycling using ternary composite materials.

2.
Materials (Basel) ; 15(16)2022 Aug 15.
Article in English | MEDLINE | ID: mdl-36013727

ABSTRACT

Samarium, gadolinium, and yttrium co-doped ceria (Ce0.8Sm0.16Y0.03Gd0.01O1.9, CSYG) and BaIn0.3Ti0.7O2.85 (BIT07) powders were prepared by sol-gel and solid-state reaction methods, respectively. CSYG-BIT07 composite materials were obtained by mechanically mixing the two powders in different ratios and calcining at 1300 °C for 5 h. Samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), as well as electrical properties and thermal expansion coefficient (TEC) measurements. A series of CSYG-BIT07 composite materials with relative densities higher than 95% were fabricated by sintering at 1300 °C for 5 h. The performance of the CSYG-BIT07 composite electrolyte was found to be related to the content of BIT07. The CSYG-15% BIT07 composite exhibited high oxide ion conductivity (σ800°C = 0.0126 S·cm-1 at 800 °C), moderate thermal expansion (TEC = 9.13 × 10-6/K between room temperature and 800 °C), and low electrical activation energy (Ea = 0.89 eV). These preliminary results indicate that the CSYG-BIT07 material is a promising electrolyte for intermediate-temperature solid oxide fuel cells (IT-SOFCs).

SELECTION OF CITATIONS
SEARCH DETAIL