Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Ther Med ; 23(4): 280, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35317440

ABSTRACT

[This retracts the article DOI: 10.3892/etm.2018.6216.].

2.
IEEE Trans Image Process ; 30: 1116-1129, 2021.
Article in English | MEDLINE | ID: mdl-33290217

ABSTRACT

Dense depth perception is critical for autonomous driving and other robotics applications. However, modern LiDAR sensors only provide sparse depth measurement. It is thus necessary to complete the sparse LiDAR data, where a synchronized guidance RGB image is often used to facilitate this completion. Many neural networks have been designed for this task. However, they often naïvely fuse the LiDAR data and RGB image information by performing feature concatenation or element-wise addition. Inspired by the guided image filtering, we design a novel guided network to predict kernel weights from the guidance image. These predicted kernels are then applied to extract the depth image features. In this way, our network generates content-dependent and spatially-variant kernels for multi-modal feature fusion. Dynamically generated spatially-variant kernels could lead to prohibitive GPU memory consumption and computation overhead. We further design a convolution factorization to reduce computation and memory consumption. The GPU memory reduction makes it possible for feature fusion to work in multi-stage scheme. We conduct comprehensive experiments to verify our method on real-world outdoor, indoor and synthetic datasets. Our method produces strong results. It outperforms state-of-the-art methods on the NYUv2 dataset and ranks 1st on the KITTI depth completion benchmark at the time of submission. It also presents strong generalization capability under different 3D point densities, various lighting and weather conditions as well as cross-dataset evaluations. The code will be released for reproduction.

3.
Croat Med J ; 60(5): 439-448, 2019 Oct 31.
Article in English | MEDLINE | ID: mdl-31686458

ABSTRACT

AIM: To explore the mechanism underlying the protective effect of adipose-derived mesenchymal stem cells (ADMSCs) against ischemic stroke by focusing on miR-21-3p/MAT2B axis. METHODS: Ischemic brain injury was induced in 126 rats by middle cerebral artery occlusion (MCAO). The effect of ADMSC administration on blood-brain barrier (BBB) condition, apoptosis, inflammation, and the activity of miR-21-3p/MAT2B axis was assessed. The role of miR-21-3p inhibition in the function of ADMSCs was further validated in in vitro neural cells. RESULTS: ADMSCs administration improved BBB condition, inhibited apoptosis, and suppressed inflammation. It also reduced the abnormally high level of miR-21-3p in MCAO rats. Dual luciferase assays showed that miR-21-3p directly inhibited the MAT2B expression in neural cells, and miR-21-3p inhibition by inhibitor or ADMSC-derived exosomes in neurons attenuated hypoxia/reoxygenation-induced impairments similarly to that of ADMSCs in vivo. CONCLUSION: This study confirmed the protective effect of ADMSCs against ischemic brain injury exerted by suppressing miR-21-3p level and up-regulating MAT2B level.


Subject(s)
Adipose Tissue/cytology , Brain Ischemia , Mesenchymal Stem Cell Transplantation , Methionine Adenosyltransferase/metabolism , MicroRNAs/metabolism , Animals , Brain Ischemia/metabolism , Brain Ischemia/surgery , Mesenchymal Stem Cells/cytology , Methionine Adenosyltransferase/genetics , MicroRNAs/genetics , Rats , Signal Transduction/physiology , Stroke , Up-Regulation
4.
IEEE Trans Pattern Anal Mach Intell ; 41(12): 2791-2806, 2019 12.
Article in English | MEDLINE | ID: mdl-31689178

ABSTRACT

This paper studies active relocalization of 6D camera pose from a single reference image, a new and challenging problem in computer vision and robotics. Straightforward active camera relocalization (ACR) is a tricky and expensive task that requires elaborate hand-eye calibration on precision robotic platforms. In this paper, we show that high-quality camera relocalization can be achieved in an active and much easier way. We propose a hand-eye calibration free approach to actively relocating the camera to the same 6D pose that produces the input reference image. We theoretically prove that, given bounded unknown hand-eye pose displacement, this approach is able to rapidly reduce both 3D relative rotational and translational pose between current camera and the reference one to an identical matrix and a zero vector, respectively. Based on these findings, we develop an effective ACR algorithm with fast convergence rate, reliable accuracy and robustness. Extensive experiments validate the effectiveness and feasibility of our approach on both laboratory tests and challenging real-world applications in fine-grained change monitoring of cultural heritages.

5.
Exp Ther Med ; 16(2): 779-787, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30116332

ABSTRACT

Taurine upregulated gene 1 (TUG1), a long non-coding RNA (lncRNA), has recently been suggested to be associated with the development of osteosarcoma (OS), but the underlying molecular mechanism still remains largely unclear. In the present study, it was revealed that TUG1 was significantly upregulated whereas miR-212-3p was significantly downregulated in OS tissues and cell lines, when compared with adjacent non-tumor tissues and normal osteoblasts cell lines, respectively. An inverse association between the TUG1 and miR-212-3p expression was also observed in OS tissues. Furthermore, TUG1 directly interacted with miR-212-3p and negatively regulated the expression of miR-212-3p in OS cells. In vitro experiments further indicated that inhibition of TUG1 suppressed the proliferation and invasion of OS cells. Furthermore, knockdown of miR-212-3p eliminated the suppressive effects of TUG1 inhibition on the proliferation and invasion of OS cells. Taken together, these findings demonstrate that TUG1 promotes OS cell proliferation and invasion by inhibition of miR-212-3p expression, thus suggesting that TUG1 may become a potential therapeutic target for OS.

6.
Neural Regen Res ; 8(16): 1455-64, 2013 Jun 05.
Article in English | MEDLINE | ID: mdl-25206441

ABSTRACT

Ideal tissue-engineered scaffold materials regulate proliferation, apoptosis and differentiation of cells seeded on them by regulating gene expression. In this study, aligned and randomly oriented collagen nanofiber scaffolds were prepared using electronic spinning technology. Their diameters and appearance reached the standards of tissue-engineered nanometer scaffolds. The nanofiber scaffolds were characterized by a high swelling ratio, high porosity and good mechanical properties. The proliferation of spinal cord-derived neural stem cells on novel nanofiber scaffolds was obviously enhanced. The proportions of cells in the S and G2/M phases noticeably increased. Moreover, the proliferation rate of neural stem cells on the aligned collagen nanofiber scaffolds was high. The expression levels of cyclin D1 and cyclin-dependent kinase 2 were increased. Bcl-2 expression was significantly increased, but Bax and caspase-3 gene expressions were obviously decreased. There was no significant difference in the differentiation of neural stem cells into neurons on aligned and randomly oriented collagen nanofiber scaffolds. These results indicate that novel nanofiber scaffolds could promote the proliferation of spinal cord-derived neural stem cells and inhibit apoptosis without inducing differentiation. Nanofiber scaffolds regulate apoptosis and proliferation in neural stem cells by altering gene expression.

7.
Virol J ; 8: 77, 2011 Feb 23.
Article in English | MEDLINE | ID: mdl-21342530

ABSTRACT

BACKGROUND: Foot-and-mouth disease (FMD) is a highly contagious disease of livestock which causes severe economic loss in cloven-hoofed animals. Vaccination is still a major strategy in developing countries to control FMD. Currently, inactivated vaccine of FMDV has been used in many countries with limited success and safety concerns. Development of a novel effective vaccine is must. METHODS: In the present study, two recombinant pseudotype baculoviruses, one expressing the capsid of foot-and-mouth disease virus (FMDV) under the control of a cytomegalovirus immediate early enhancer/promoter (CMV-IE), and the other the caspid plus a T-cell immunogen coding region under a CAG promoter were constructed, and their expression was characterized in mammalian cells. In addition, their immunogenicity in a mouse model was investigated. The humoral and cell-mediated immune responses induced by pseudotype baculovirus were compared with those of inactivated vaccine. RESULTS: Indirect immunofluorescence assay (IFA) and indirect sandwich-ELISA (IS-ELISA) showed both recombinant baculoviruses (with or without T-cell epitopes) were transduced efficiently and expressed target proteins in BHK-21 cells. In mice, intramuscular inoculation of recombinants with 1 × 109 or 1 × 1010 PFU/mouse induced the production of FMDV-specific neutralizing antibodies and gamma interferon (IFN-γ). Furthermore, recombinant baculovirus with T-cell epitopes had better immunogenicity than the recombinant without T-cell epitopes as demonstrated by significantly enhanced IFN-γ production (P < 0.01) and higher neutralizing antibody titer (P < 0.05). Although the inactivated vaccine produced the highest titer of neutralizing antibodies, a lower IFN-γ expression was observed compared to the two recombinant pseudotype baculoviruses. CONCLUSIONS: These results indicate that pseudotype baculovirus-mediated gene delivery could be a alternative strategy to develop a new generation of vaccines against FMDV infection.


Subject(s)
Baculoviridae/genetics , Capsid Proteins/immunology , Drug Carriers , Foot-and-Mouth Disease Virus/immunology , Genetic Vectors , T-Lymphocytes/immunology , Viral Vaccines/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Capsid Proteins/genetics , Foot-and-Mouth Disease/immunology , Foot-and-Mouth Disease/prevention & control , Foot-and-Mouth Disease Virus/genetics , Injections, Intramuscular , Interferon-gamma/metabolism , Mice , Viral Vaccines/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...