Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 20828, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38012237

ABSTRACT

In contrast to traditional approaches to simulating fresh concrete, the model applied here allows issues such as liquid phase and the motion of sub-scale particles to be considered. The rheological behavior of fresh concrete materials was investigated, and the slump test and pumping process of fresh concrete were simulated by combining the smooth particle hydrodynamics coupled with discrete element method. Based on Bi-viscosity model and Bingham model, linear and nonlinear fitting of rheometer data and the derivation equations were educing. Bi-viscosity model and the Bingham model were compared in slump test. The results show that the Bi-viscosity model is more accurate in simulation, and the error percentage is less than 10%. The Bi-viscosity model was used to simulate and predict the results of slump experiment, and the influence of rheological parameters on the slump velocity and shape was obtained. The simulation analysis model of concrete single-cylinder pumping is established, and the experimental and simulation analysis models are compared. The results show that the SPH-DEM pumping pressure prediction is very close to the experimental results.

2.
Materials (Basel) ; 15(12)2022 Jun 17.
Article in English | MEDLINE | ID: mdl-35744352

ABSTRACT

With an increase of suction efficiency of fresh concrete pumping in confined spaces, the laminar flow state will be damaged by the return flow caused by distribution value direction changes and concrete gravity. This is a fact, but one which is rarely studied. In this work, the flow state, flow velocity, and suction efficiency of fresh concrete pumping are simulated using the coupled smooth particle hydrodynamics and Discrete Elements Method (SPH-DEM). The rheological parameters and Herschel-Bulkley-Papanastasiou (HBP) rheological model are adopted to simulate fresh concrete in the numerical simulation model. The study reveals that the error between the slump experimental result and that obtained by the HBP model is negligible. A model is therefore established for numerical simulations of the suction efficiency of fresh concrete pumping. An experimental concrete pumping platform is built, and the pressure and efficiency data during pumping are collected. A comparison of the numerical simulation with experimental results shows that the error is less than 10%.

SELECTION OF CITATIONS
SEARCH DETAIL
...