Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Sci Food Agric ; 104(5): 2917-2927, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38036304

ABSTRACT

BACKGROUND: The use of high internal-phase Pickering emulsions in the food industry is widespread due to their excellent stability and special rheological properties. Proteins are often used as food-grade Pickering stabilizers due to their safety and nutritious properties. Nowadays, the development and efficient utilization of novel proteins as Pickering stabilizers has become a new challenge. RESULTS: Phycocyanin complexes with small-molecule sugars (SMS), formed as a result of non-thermal interactions, can serve as stabilizers for high internal-phase Pickering emulsions. The addition of SMS-enabled gel-like emulsions significantly reduced the amount of emulsifier used. When the SMS was sorbitol, the emulsion had excellent elastic properties and self-supporting ability and was stable during long-term storage, when subjected to centrifugation, and under different temperature conditions. The fluorescent property of phycocyanin was utilized to investigate the formation mechanism of the emulsion. Small-molecule sugars were able to form 'sugar-shell' structures on the surface of proteins to enhance the structural stability of proteins. Phycocyanin-SMS-stabilized emulsions provided superior protection for photosensitive and volatile substances. The retention rates of trans-resveratrol and n-hexane increased by 384.75% and 30.55%, respectively. CONCLUSION: These findings will encourage the development of proteins that stabilize Pickering emulsions. They will also provide new ideas for protecting photosensitive and volatile substances. © 2023 Society of Chemical Industry.


Subject(s)
Phycocyanin , Sugars , Emulsions/chemistry , Emulsifying Agents/chemistry , Particle Size
2.
J Mater Chem B ; 11(44): 10728-10737, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37921104

ABSTRACT

Phycocyanin, a macromolecular protein known for its robust fluorescence, proves to be highly suitable for verifying the successful deposition of imprinted layers. In this study, an acid-propelled magnetic micromotor was successfully fabricated by utilizing surface imprinting and self-propelled nanomotor technology to achieve selective loading and capture of targets such as phycocyanin for future applications in environmental monitoring and precision drug delivery in vivo. This micromotor features a distinct recognition layer achieved through a template electrodeposition method. The outermost imprint layer of the micromotor was meticulously crafted using poly(3,4-ethylenedioxythiophene)/poly(sodium-4-styrenesulfonate) in the presence of a template, while the Pt layer serves as the supportive foundation, the Ni layer acts as the magnetic guidance component, and the innermost layer consists of metal Zn. In acidic environments, the Zn reacts to generate bubbles, which propels the micromotor's motion. The micromotor was comprehensively characterized using techniques such as scanning electron microscopy. Findings highlight the exceptional self-propulsion of the Zn-based micromotor, which is a fusion of molecular imprinting and micromotor technologies. This innovative design achieves an impressive maximum velocity of approximately 100 µm s-1, as well as commendable magnetic steering performance. Furthermore, the micromotor demonstrates the ability to imprint target protein through the imprint layer, enabling selective recognition and capture for transport of specific phycocyanin. In vitro cytotoxicity tests have also demonstrated that the micromotors are non-toxic to cells. This breakthrough concept offers a novel avenue for realizing targeted capture and transport of specific nutrients within the human gastric environment.


Subject(s)
Phycocyanin , Proteins , Humans , Motion
3.
Mol Ther Nucleic Acids ; 31: 241-255, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36700047

ABSTRACT

Here, a method using SplintR ligase-mediated ligation of complementary-pairing probes enhanced by RNase H (SPLICER) for miRNAs quantification was established. The strategy has two steps: (1) ligation of two DNA probes specifically hybridize to target miRNA and (2) qPCR amplifying the ligated probe. The miRNA-binding regions of the probes are stem-looped, a motif significantly reduces nonspecific ligation at high ligation temperature (65°C). The ends of the probes are designed complementary to form a paired probe, facilitating the recognition of target miRNAs with low concentrations. RNase H proved to be able to stabilize the heteroduplex formed by the probe and target miRNA, contributing to enhanced sensitivity (limit of detection = 60 copies). High specificity (discriminating homology miRNAs differing only one nucleotide), wide dynamic range (seven orders of magnitude) and ability to accurately detect plant miRNAs (immune to hindrance of 2'-O-methyl moiety) enable SPLICER comparable with the commercially available TaqMan and miRCURY assays. SYBR green I, rather than expensive hydrolysis or locked nucleic acid probes indispensable to TaqMan and miRCURY assays, is adequate for SPLICER. The method was efficient (<1 h), economical ($7 per sample), and robust (able to detect xeno-miRNAs in mammalian bodies), making it a powerful tool for molecular diagnosis and corresponding therapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...