Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Language
Publication year range
1.
Rev Assoc Med Bras (1992) ; 66(6): 778-783, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32696859

ABSTRACT

OBJECTIVE This study aimed to propose a co-expression-network (CEN) based gene functional inference by extending the "Guilt by Association" (GBA) principle to predict candidate gene functions for type 1 diabetes mellitus (T1DM). METHODS Firstly, transcriptome data of T1DM were retrieved from the genomics data repository for differentially expressed gene (DEGs) analysis, and a weighted differential CEN was generated. The area under the receiver operating characteristics curve (AUC) was chosen to determine the performance metric for each Gene Ontology (GO) term. Differential expression analysis identified 325 DEGs in T1DM, and co-expression analysis generated a differential CEN of edge weight > 0.8. RESULTS A total of 282 GO annotations with DEGs > 20 remained for functional inference. By calculating the multifunctionality score of genes, gene function inference was performed to identify the optimal gene functions for T1DM based on the optimal ranking gene list. Considering an AUC > 0.7, six optimal gene functions for T1DM were identified, such as regulation of immune system process and receptor activity. CONCLUSIONS CEN-based gene functional inference by extending the GBA principle predicted 6 optimal gene functions for T1DM. The results may be potential paths for therapeutic or preventive treatments of T1DM.


Subject(s)
Diabetes Mellitus, Type 1/genetics , Biomarkers , Gene Expression Profiling , Humans , ROC Curve , Transcriptome
2.
Rev. Assoc. Med. Bras. (1992, Impr.) ; Rev. Assoc. Med. Bras. (1992, Impr.);66(6): 778-783, June 2020. graf
Article in English | Sec. Est. Saúde SP, LILACS | ID: biblio-1136274

ABSTRACT

SUMMARY OBJECTIVE This study aimed to propose a co-expression-network (CEN) based gene functional inference by extending the "Guilt by Association" (GBA) principle to predict candidate gene functions for type 1 diabetes mellitus (T1DM). METHODS Firstly, transcriptome data of T1DM were retrieved from the genomics data repository for differentially expressed gene (DEGs) analysis, and a weighted differential CEN was generated. The area under the receiver operating characteristics curve (AUC) was chosen to determine the performance metric for each Gene Ontology (GO) term. Differential expression analysis identified 325 DEGs in T1DM, and co-expression analysis generated a differential CEN of edge weight > 0.8. RESULTS A total of 282 GO annotations with DEGs > 20 remained for functional inference. By calculating the multifunctionality score of genes, gene function inference was performed to identify the optimal gene functions for T1DM based on the optimal ranking gene list. Considering an AUC > 0.7, six optimal gene functions for T1DM were identified, such as regulation of immune system process and receptor activity. CONCLUSIONS CEN-based gene functional inference by extending the GBA principle predicted 6 optimal gene functions for T1DM. The results may be potential paths for therapeutic or preventive treatments of T1DM.


RESUMO OBJETIVO O objetivo deste estudo é realizar uma inferência funcional genética baseada na rede de coexpressão (CEN), expandindo o escopo do princípio de "Culpa por Associação" (GBA - Guilt by Association) para prever as funções genéticas do diabetes mellitus tipo 1 (T1DM). MÉTODOS Primeiro, os dados transcritos do T1DM foram recuperados do repositório de dados genômicos para a análise dos genes diferenciais (DEGs), e foi gerada uma CEN diferencial ponderada. A área sob a curva ROC (AUC) foi escolhida para determinar a métrica de desempenho para cada termo de Ontologia Genética (GO). A análise da expressão diferencial identificou 325 DEGs no T1DM, e a análise de coexpressão gerou uma CEN diferencial com aresta de peso >0,8. RESULTADOS Um total de 282 anotações de GO com DEGs >20 foram mantidas para inferência funcional. Ao calcular a pontuação de multifuncionalidade dos genes, a inferência da função genética foi realizada para identificar as funções genéticas ideais para T1DM com base na lista de classificação genética ideal. Considerando um valor de AUC >0,7, foram identificadas seis funções genéticas ideais para a T1DM, tais como a regulação do processo imunológico e da atividade dos receptores. CONCLUSÕES A inferência funcional genética baseada em CEN, ao expandir o princípio de GBA, previu seis funções genéticas ideais para o T1DM. Os resultados podem ser caminhos potenciais para tratamentos terapêuticos ou preventivos do T1DM.


Subject(s)
Humans , Diabetes Mellitus, Type 1/genetics , Biomarkers , ROC Curve , Gene Expression Profiling , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL