Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
Add more filters










Publication year range
1.
Analyst ; 149(13): 3585-3595, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38767148

ABSTRACT

The main protease of SARS-CoV-2 (SARS-CoV-2 Mpro) plays a critical role in the replication and life cycle of the virus. Currently, how to screen SARS-CoV-2 Mpro inhibitors from complex traditional Chinese medicine (TCM) is the bottleneck for exploring the pharmacodynamic substances of TCM against SARS-CoV-2. In this study, a simple, cost-effective, rapid, and selective fluorescent sensor (TPE-S-TLG sensor) was designed with an AIE (aggregation-induced emission) probe (TPE-Ph-In) and the SARS-CoV-2 Mpro substrate (S-TLG). The TPE-S-TLG sensor was characterized using UV-Vis absorption spectroscopy, fluorescence spectroscopy, dynamic light scattering (DLS), transmission electron microscopy (TEM), zeta potential, and Fourier transform infrared (FTIR) spectroscopy techniques. The limit of detection of this method to detect SARS-CoV-2 Mpro was measured to be 5 ng mL-1. Furthermore, the TPE-S-TLG sensor was also successfully applied to screen Mpro inhibitors from Xuebijing injection using the separation and collection of the HPLC-fully automatic partial fraction collector (HPLC-FC). Six active compounds, including protocatechualdehyde, chlorogenic acid, hydroxysafflower yellow A, caffeic acid, isoquercetin, and pentagalloylglucose, were identified using UHPLC-Q-TOF/MS that could achieve 90% of the Mpro inhibition rate for the Xuebijing injection. Accordingly, the strategy can be broadly applied in the detection of disease-related proteases as well as screening active substances from TCM.


Subject(s)
Coronavirus 3C Proteases , Fluorescent Dyes , Medicine, Chinese Traditional , SARS-CoV-2 , Spectrometry, Fluorescence , SARS-CoV-2/isolation & purification , SARS-CoV-2/drug effects , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , Humans , Fluorescent Dyes/chemistry , Spectrometry, Fluorescence/methods , Antiviral Agents/pharmacology , Antiviral Agents/analysis , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/analysis , COVID-19/virology , COVID-19/diagnosis , Limit of Detection , COVID-19 Drug Treatment
2.
Chem Sci ; 15(16): 5973-5979, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38665518

ABSTRACT

Supramolecular engineering is exceptionally appealing in the design of functional materials, and J-aggregates resulting from noncovalent interactions offer intriguing features. However, building J-aggregation platforms remains a significant challenge. Herein, we report 3,5-dithienyl Aza-BODIPYs with a donor-acceptor-donor (D-A-D) architecture as the first charge transfer (CT)-coupled J-aggregation BODIPY-type platform. The core acceptor moieties in one molecule interact with donor units in neighboring molecules to generate slip-stacked packing motifs, resulting in CT-coupled J-aggregation with a redshifted wavelength up to 886 nm and an absorption tail over 1100 nm. The J-aggregates show significant photoacoustic signals and high photothermal conversion efficiency of 66%. The results obtained in vivo show that the J-aggregates have the potential to be used for tumor photothermal ablation and photoacoustic imaging. This study not only demonstrates Aza-BODIPY with D-A-D as a novel CT-coupled J-aggregation platform for NIR phototherapy materials but also motivates further study on the design of J-aggregation.

3.
Anal Chem ; 96(16): 6356-6365, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38588440

ABSTRACT

Renal fibrosis poses a significant threat to individuals suffering from chronic progressive kidney disease. Given the absence of effective medications for treating renal fibrosis, it becomes crucial to assess the extent of fibrosis in real time and explore the development of novel drugs with substantial therapeutic benefits. Due to the accumulation of renal tissue damage and the uncontrolled deposition of fibrotic matrix during the course of the disease, there is an increase in viscosity both intracellularly and extracellularly. Therefore, a viscosity-sensitive near-infrared fluorescence (NIRF) and photoacoustic (PA) imaging probe, BDP-KY, was developed to detect aberrant changes in viscosity during fibrosis. Furthermore, BDP-KY has been applied to screen the effective components of herbal medicine, rhubarb, resulting in the identification of potential antirenal fibrotic compounds such as emodin-8-glucoside and chrysophanol 8-O-glucoside. Ultrasound, PA, and NIRF imaging of a unilateral uretera obstruction mice model show that different concentrations of emodin-8-glucoside and chrysophanol 8-O-glucoside effectively reduce viscosity levels during the renal fibrosis process. The histological results showed a significant decrease in fibrosis factors α-smooth muscle actin and collagen deposition. Combining these findings with their pharmacokinetic characteristics, these compounds have the potential to fill the current market gap for effective antirenal fibrosis drugs. This study demonstrates the potential of BDP-KY in the evaluation of renal fibrosis, and the two identified active components from rhubarb hold great promise for the treatment of renal fibrosis.

4.
Adv Mater ; 36(18): e2311397, 2024 May.
Article in English | MEDLINE | ID: mdl-38221651

ABSTRACT

Acute kidney injury (AKI) has become an increasing concern for patients due to the widespread clinical use of nephrotoxic drugs. Currently, the early diagnosis of AKI is still challenging and the available therapeutic drugs cannot meet the clinical demand. Herein, this work has investigated the key redox couple involved in AKI and develops a tailored photoacoustic (PA) imaging probe (AB-DiOH) which can reversibly respond to hypochlorite (ClO-)/glutathione (GSH) with high specificity and sensitivity. This probe enables the real-time monitoring of AKI by noninvasive PA imaging, with better detection sensitivity than the blood test. Furthermore, this probe is utilized for screening nephroprotective drugs among natural products. For the first time, astragalin is discovered to be a potential new drug for the treatment of AKI. After oral administration, astragalin can be efficiently absorbed by the animal body, alleviate kidney injury, and meanwhile induce no damage to other normal tissues. The treatment mechanism of astragalin has also been revealed to be the simultaneous inhibition of oxidative stress, ferroptosis, and cuproposis. The developed PA imaging probe and the discovered drug candidate provide a promising new tool and strategy for the early diagnosis and effective treatment of AKI.


Subject(s)
Acute Kidney Injury , Photoacoustic Techniques , Photoacoustic Techniques/methods , Acute Kidney Injury/diagnostic imaging , Acute Kidney Injury/drug therapy , Acute Kidney Injury/metabolism , Acute Kidney Injury/diagnosis , Animals , Mice , Oxidative Stress/drug effects , Ferroptosis/drug effects , Humans , Hypochlorous Acid/metabolism , Glutathione/metabolism , Glutathione/chemistry , Kaempferols/chemistry , Kaempferols/pharmacology , Kidney/diagnostic imaging , Kidney/metabolism , Drug Discovery
5.
Adv Sci (Weinh) ; 10(33): e2303926, 2023 11.
Article in English | MEDLINE | ID: mdl-37870188

ABSTRACT

The hydroxyl radical (•OH) is shown to play a crucial role in the occurrence and progression of acute kidney injury (AKI). Therefore, the development of a robust •OH probe holds great promise for the early diagnosis of AKI, high-throughput screening (HTS) of natural protectants, and elucidating the molecular mechanism of intervention in AKI. Herein, the design and synthesis of an activatable fluorescent/photoacoustic (PA) probe (CDIA) for sensitive and selective imaging of •OH in AKI is reported. CDIA has near-infrared fluorescence/PA channels and fast activation kinetics, enabling the detection of the onset of •OH in an AKI model. The positive detection time of 12 h using this probe is superior to the 48-hour detection time for typical clinical assays, such as blood urea nitrogen and serum creatinine detection. Furthermore, a method is established using CDIA for HTS of natural •OH inhibitors from herbal medicines. Puerarin is screened out by activating the Sirt1/Nrf2/Keap1 signaling pathway to protect renal cells in AKI. Overall, this work provides a versatile and dual-mode tool for illuminating the •OH-related pathological process in AKI and screening additional compounds to prevent and treat AKI.


Subject(s)
Acute Kidney Injury , Fluorescent Dyes , Humans , Hydroxyl Radical/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , High-Throughput Screening Assays , Lighting , NF-E2-Related Factor 2/metabolism , Acute Kidney Injury/diagnosis , Acute Kidney Injury/metabolism , Kidney/metabolism
6.
Anal Chim Acta ; 1279: 341799, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37827639

ABSTRACT

Xuebijing injection (XBJ) has a good therapeutic effect on the patients with severe coronavirus disease, but the material basis of XBJ with the anticoagulant effect to improve the coagulopathy and thromboembolism is still unclear. Herein, we developed a new strategy based on aggregation-induced emission (AIE) for monitoring thrombin activity and screening thrombin inhibitors from XBJ. The molecule AIE603 and the thrombin substrate peptide S-2238 were formed into AIE nanoparticle (AIENP) which emitted notable fluorescence due to the restriction of intramolecular motions. In the presence of thrombin, AIENP was specifically hydrolyzed and AIE603 was released from AIENP, leading to the decrease of fluorescence intensity. Furthermore, AIENP was combined with ultra-high performance liquid chromatography-fraction collector (UHPLC-FC) and ultra-high performance liquid chromatography quadrupole-time-of-flight mass spectrometry (UHPLC-Q-TOF/MS) for separation, preparation, screening and identification of the thrombin inhibitors from XBJ, a total of 58 chemical constituents were identified, among which 6 compounds possessed higher anticoagulant activity. Notably, the overall inhibition rate of the 6 mixed standards was equivalent to about 60% of the inhibition rate of XBJ. Therefore, this work provides a novel, cheap and simple method for monitoring thrombin activity and is promising to screen active substances from traditional Chinese medicines.


Subject(s)
Drugs, Chinese Herbal , Medicine, Chinese Traditional , Humans , Chromatography, High Pressure Liquid/methods , Anticoagulants/pharmacology , Thrombin , Drugs, Chinese Herbal/analysis , Mass Spectrometry/methods
7.
J Ginseng Res ; 47(4): 543-551, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37397411

ABSTRACT

Background: Panax ginseng Meyer is a representative Chinese herbal medicine with antioxidant and anti-inflammatory activity. 20(S)-Protopanaxadiol (PPD) has been isolated from ginseng and shown to have promising pharmacological activities. However, effects of PDD on pulmonary fibrosis (PF) have not been reported. We hypothesize that PDD may reverse inflammation-induced PF and be a novel therapeutic strategy. Methods: Adult male C57BL/6 mice were used to establish a model of PF induced by bleomycin (BLM). The pulmonary index was measured, and histological and immunohistochemical examinations were made. Cell cultures of mouse alveolar epithelial cells were analyzed with Western blotting, co-immunoprecipitation, immunofluorescence, immunohistochemistry, siRNA transfection, cellular thermal shift assay and qRT-PCR. Results: The survival rate of PPD-treated mice was higher than that of untreated BLM-challenged mice. Expression of fibrotic hallmarks, including α-SMA, TGF-ß1 and collagen I, was reduced by PPD treatment, indicating attenuation of PF. Mice exposed to BLM had higher STING levels in lung tissue, and this was reduced by phosphorylated AMPK after activation by PPD. The role of phosphorylated AMPK in suppressing STING was confirmed in TGF-ß1-incubated cells. Both in vivo and in vitro analyses indicated that PPD treatment attenuated BLM-induced PF by modulating the AMPK/STING signaling pathway. Conclusion: PPD ameliorated BLM-induced PF by multi-target regulation. The current study may help develop new therapeutic strategies for preventing PF.

8.
Sensors (Basel) ; 23(13)2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37447963

ABSTRACT

The differences in urinary proteins could provide a novel opportunity to distinguish the different types of drug-induced kidney injury (DIKI). In this research, Au nanoparticles-polyethyleneimine (AuNPs-PEI) and the three fluorophore-labeled proteins (FLPs) have been constructed as a multichannel fluorescent array sensor via electrostatic interaction, which was used to detect the subtle changes in urine collected from the pathological state of DIKI. Once the urine from different types of DIKI was introduced, the binding equilibrium between AuNPs-PEI and FLPs would be broken due to the competitive binding of urinary protein, and the corresponding fluorescence response pattern would be generated. Depending on the different fluorescence response patterns, the different types of DIKI were successfully identified by principal component analysis (PCA) and linear discriminant analysis (LDA). Accordingly, the strategy was expected to be a powerful technique for evaluating the potential unclear mechanisms of nephrotoxic drugs, which would provide a promising method for screening potential renal-protective drugs.


Subject(s)
Gold , Metal Nanoparticles , Proteins , Fluorescent Dyes , Kidney
9.
Bioorg Chem ; 138: 106662, 2023 09.
Article in English | MEDLINE | ID: mdl-37307714

ABSTRACT

The construction of novel organoboron complexes with facile synthesis and unique advantages for biological imaging remains a challenge and thus has garnered considerable attention. Herein, we developed a new molecular platform, boron indolin-3-one-pyrrol (BOIN3OPY) via a two-step sequential reaction. The molecular core is robust enough to allow for post-functionalization to produce versatile dyes. When compared to the standard BODIPY, these dyes feature an N,O-bidentate seven-membered ring center, significantly redshifted absorption, and a larger Stokes shift. This study establishes a new molecular platform that provides more flexibility for the functional regulation of dyes.


Subject(s)
Boron Compounds , Fluorescent Dyes
10.
Anal Chim Acta ; 1264: 341302, 2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37230722

ABSTRACT

Aristolochic Acid I (AAI) is an environmental and foodborne toxin found in the Aristolochia and Asarum species of plants that are widespread all over the world. Therefore, there is an urgent need to develop a sensitive and specific biosensor for identifying AAI. Aptamers as a powerful biorecognition element provide the most viable options for solving this problem. In this study, we used library-immobilized SELEX to isolate an AAI-specific aptamer with a KD value of 86 ± 13 nM. To verify the practicability of the selected aptamer, a label-free colorimetric aptasensor was designed. This aptasensor exhibited a low detection limit of 225 nM. Besides, it had been further applied for the determination of AAI in real samples and the recoveries ranged from 97.9% to 102.4%. In the future, AAI aptamer will provide a promising tool for safety evaluation in various fields of agriculture, food, and medication.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Limit of Detection , Plant Extracts , SELEX Aptamer Technique
11.
Redox Biol ; 60: 102610, 2023 04.
Article in English | MEDLINE | ID: mdl-36652744

ABSTRACT

Ginsenoside Rd is an active ingredient in Panax ginseng CA Mey and can be absorbed into the adipose tissue. Adipokines play an important role in the treatment of cardiovascular diseases. However, the potential benefit of Rd on heart failure (HF) and the underlying mechanism associated with the crosstalk between adipocytes and cardiomyocytes remains to be illustrated. Here, the results identified that Rd improved cardiac function and inhibited cardiac pathological changes in transverse aortic constriction (TAC), coronary ligation (CAL) and isoproterenol (ISO)-induced HF mice. And Rd promoted the release of omentin from the adipose tissue and up-regulated omentin expression in lipopolysaccharide (LPS)-induced 3T3-L1 adipocytes. Further, Rd could increase TBK1 and AMPK phosphorylation in adipocytes. And also, the TBK1-AMPK signaling pathway regulated the expression of omentin in LPS-induced adipocytes. Moreover, the omentin mRNA expression was significantly decreased by TBK1 knockdown in LPS-induced 3T3-L1 adipocytes. Additionally, molecular docking and SPR analysis confirmed that Rd had a certain binding ability with TBK1, and co-treatment with TBK1 inhibitors or TBK1 knockdown partially abolished the effect of Rd on increasing the omentin expression and the ratio of p-AMPK to AMPK in adipocytes. Moreover, we found that circulating omentin level diminished in the HF patients compared with healthy subjects. Meanwhile, the adipose tissue-specific overexpression of omentin improved cardiac function, reduced myocardial infarct size and ameliorated cardiac pathological features in CAL-induced HF mice. Consistently, exogenous omentin reduced mtROS levels and restored ΔψM to improve oxygen and glucose deprivation (OGD)-induced cardiomyocytes injury. Further, omentin inhibited the WNT5A/Ca2+ signaling pathway and promoted mitochondrial biogenesis function to ameliorate myocardial ischemia injury. However, WNT5A knockdown inhibited the impairment of mitochondrial biogenesis and partially counteracted the cardioprotective effect of omentin in vitro. Therefore, this study indicated that Rd promoted omentin secretion from adipocytes through the TBK1-AMPK pathway to improve mitochondrial biogenesis function via WNT5A/Ca2+ signaling pathway to ameliorate myocardial ischemia injury, which provided a new therapeutic mechanism and potential drugs for the treatment of HF.


Subject(s)
Heart Failure , Myocardial Ischemia , Animals , Mice , AMP-Activated Protein Kinases/metabolism , Heart Failure/drug therapy , Heart Failure/etiology , Lipopolysaccharides , Molecular Docking Simulation , Organelle Biogenesis , Protein Serine-Threonine Kinases , Calcium Signaling
12.
Anal Chim Acta ; 1236: 340562, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36396243

ABSTRACT

Cystatin C (Cys C) has been considered as a novel biomarker of kidney disease, which is thought to be a better indicator of glomerular filtration rate than creatinine (Scr) in the prediction of acute kidney injury (AKI). Hence, there is strong need to develop a precise, rapid and simple detection method for Cys C. Here we reported a Arg-liposome-amplified colorimetric immunoassay for the detection of Cys C to predict AKI. Cys C antibodies are conjugated on the surface of magnetic beads (MBs) and arginine (Arg)-loaded liposomes to form Ab1-MBs and Ab2-Arg-liposomes, respectively. When Ab1-MBs captured Cys C, Ab2-Arg-liposomes are added and incubated to form the immuno-sandwich complex. After magnetic separation, the surfactant Triton ×100 is added to damage the liposomes, leading to the release of Arg which can induce the gold nanoparticles aggregation. Therefore, the discoloration can be used for visual and quantitative detection of Cys C. Notably, the method has a linear relation in the range of 10-100 µg/L for Cys C with a limit of detection 4.32 µg/L, which is lower than some of the previous reports. In addition, the AKI mice serum samples were tested by the developed method, which were in good agreement with ELISA results. More intriguingly, the results of cisplatin induced acute kidney injury in mice showed that the method could be used to evaluate the protective effect of astragalus membranaceus (AM) on AKI by detecting Cys C in serum, providing a new strategy for screening renal protective drugs. Accordingly, a rapid and highly sensitive Cys C detection system was established with great potential for clinical diagnostics.


Subject(s)
Acute Kidney Injury , Metal Nanoparticles , Mice , Animals , Cystatin C , Liposomes , Colorimetry , Arginine , Gold , Acute Kidney Injury/chemically induced , Acute Kidney Injury/diagnosis , Immunoassay
13.
Int J Nanomedicine ; 17: 3723-3733, 2022.
Article in English | MEDLINE | ID: mdl-36061124

ABSTRACT

Introduction: Urinary tract infections (UTI) are one of the most serious human bacterial infections affecting millions of people every year. Therefore, simple and reliable identification of the urinary tract pathogenic bacteria within a few minutes would be of great significance for diagnosis and treatment of clinical patients with UTIs. In this study, the fluorescence sensor was reported to guide the detection of urinary tract bacterial infections rapidly. Methods: The Ami-AuNPs-DNAs sensor was fabricated by the amino-modified Au nanoparticles (Ami-AuNPs) and six DNAs signal molecules, which bound to the urinary tract pathogenic bacteria and generated corresponding response signals. Further, based on the collected response signals, identification was performed by principal component analysis (PCA) and linear discriminant analysis (LDA). The Ami-AuNPs and Ami-AuNPs-DNAs were characterized by transmission electron microscopy, UV-vis absorption spectrum, Fourier transform infrared spectrum, dynamic light scattering and zeta potentials. Thereafter, the Ami-AuNPs-DNAs sensor was used to discriminate and identify five kinds of urinary tract pathogenic bacteria. Moreover, the quantitative analysis performance towards individual bacteria at different concentrations were also evaluated. Results: The Ami-AuNPs-DNAs sensor were synthesized successfully in terms of spherical, well-dispersed and uniform in size, which could well discriminate five main urinary tract pathogenic bacteria with unique fingerprint-like patterns and was sufficiently sensitive to determine individual bacteria with a detection limit to 1×107 cfu/mL. Furthermore, the sensor had also been successfully applied to identify bacteria in urine samples collected from clinical UTIs. Conclusion: The developed fluorescence sensor could be applied to rapid and accurate discrimination of urinary tract pathogenic bacteria and holds great promise for the diagnosis of the disease caused by bacterial infection.


Subject(s)
Bacterial Infections , Metal Nanoparticles , Urinary Tract Infections , Urinary Tract , Bacteria , Bacterial Infections/diagnosis , DNA , Fluorescence , Gold , Humans , Urinary Tract Infections/diagnosis , Urinary Tract Infections/microbiology
14.
Mikrochim Acta ; 189(8): 304, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35915355

ABSTRACT

Identifying the progress of kidney injury may aid the effective treatment and intervention. Herein, we developed a fluorescent biosensor array for instantaneous and accurate identification of the kidney injury progression via "doubled" signals. The multichannel biosensor array consisted of polydopamine-polyethyleneimine (PDA-PEI) and multicolor-labelled different length of DNAs including AAAAA-Cyanine7 (5A-Cy7), AAAAAAAAAA-Texas Red (10A-Texas Red), and AAAAAAAAAAAAAAAAAAAA-VIC (20A-VIC). Facing to the variety of protein in urine with alterable charge accompanied with different progress of kidney injury, the composition of urine replaces the DNA signal molecules, forming their special fluorescence patterns. Taking the size of protein into consideration, the original three variables induced by the protein charge were extended to six variables induced by the two factors of protein particle size and charge difference, which could provide a more accurate strategy to identify the progress of kidney injury. Notably, this strategy not only opened up new perspective for identification the progress of kidney injury via the size and charge of urine protein, but also improved the resolving power of sensor array by increasing the number of sensor elements for extending their potential application to various diseases.


Subject(s)
Biosensing Techniques , Fluorescent Dyes , Kidney , Polyethyleneimine , Proteins
15.
Anal Chem ; 94(27): 9697-9705, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35767885

ABSTRACT

Acute kidney injury (AKI) has become a growing issue for patients with the extensive use of all kinds of drugs in clinic. Photoacoustic (PA) imaging provides a noninvasive and real-time imaging method for studying kidney injury, but it has inherent shortages in terms of high background signal and low detection sensitivity for exogenous imaging agents. Intriguingly, J-aggregation offers to tune the optical properties of the dyes, thus providing a platform for developing new PA probes with desired performance. In this study, a small-molecule PA probe (BDP-3) was designed and synthesized. We serendipitously discovered that BDP-3 can transform into renal clearable nanoaggregates under physiological conditions. The hydrodynamic diameter of the BDP-3 increased from 0.64 ± 0.11 to 3.74 ± 0.39 nm when the content of H2O increased from 40 to 90%. In addition, it was surprising that such a transforming process can significantly enhance its PA amplitude (2.06-fold). On this basis, PA imaging with BDP-3 was applied as a new method for the noninvasive detection of AKI induced by anticancer drugs, traditional Chinese medicine, and clinical contrast agents in animal models and exhibited higher sensitivity than the conventional serum index test, demonstrating great potential for further clinical diagnostic applications.


Subject(s)
Acute Kidney Injury , Antineoplastic Agents , Photoacoustic Techniques , Acute Kidney Injury/chemically induced , Acute Kidney Injury/diagnostic imaging , Animals , Contrast Media , Diagnostic Imaging , Photoacoustic Techniques/methods
16.
Anal Chim Acta ; 1204: 339737, 2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35397900

ABSTRACT

The kidney is a vital organ and susceptible to various diseases. Photoacoustic (PA) imaging provides a powerful technique for studying kidney dysfunction, for which many smart photoacoustic imaging agents have been developed. But the complete clearance of the introduced contrast agents after imaging remains to be challenging, leading to long-term toxicity concerns. In this study, we synthesized black phosphorous quantum dots (BPQDs) with ultra-small size (1.74 ± 0.23 nm after surface modification) and strong PA signal for imaging kidney dysfunction. Importantly, the renal-clearance property and biodegradability of the developed BPQDs help circumvent the long-term toxicity issue for in vivo studies. Based on these BPQDs, both acute kidney injury and chronic kidney disease were successfully detected in the living mice by PA imaging, with higher detection sensitivity than the clinical serum indices examination method. This BPQDs-based PA imaging method should have a promising potential for the early diagnosis of kidney dysfunction in clinic.


Subject(s)
Photoacoustic Techniques , Quantum Dots , Animals , Contrast Media , Kidney/diagnostic imaging , Mice , Phosphorus , Quantum Dots/toxicity
17.
Anal Chem ; 94(15): 5918-5926, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35385655

ABSTRACT

Homeostasis of the cellular redox status plays an indispensable role in diverse physiological and pathological processes. Hypochlorite anion (ClO-) and glutathione (GSH) represent an important redox couple to reflect the redox status in living cells. The current cellular redox probes that detect either ClO- or GSH alone are not accurate enough to monitor the real redox status. In this work, a reversible photoacoustic (PA) probe, DiOH-BDP, has been synthesized and applied for PA imaging to monitor the ClO-/GSH couple redox state in an acute liver injury (ALI) model. The near-infrared PA probe DiOH-BDP features significant changes in absorption between 648 and 795 nm during the selective oxidation by ClO- and the reductive recovery of GSH, which exhibits excellent selectivity and sensitivity toward ClO- and GSH with the limits of detection of 77.7 nM and 7.2 µM, respectively. Additionally, using PA770 as a detection signal allows for the in situ monitoring of the ClO-/GSH couple, which realizes mapping of the localized redox status of the ALI by the virtue of a PA imaging system. Therefore, the probe provides a potentially technical tool to understand redox imbalance-related pathological formation processes.


Subject(s)
Fluorescent Dyes , Hypochlorous Acid , Glutathione/metabolism , Optical Imaging/methods , Oxidation-Reduction
19.
Anal Chim Acta ; 1160: 338447, 2021 May 22.
Article in English | MEDLINE | ID: mdl-33894967

ABSTRACT

Drug-induced kidney injury causes structural or functional abnormalities of kidney, seriously affecting clinical practice and drug discovery. However, rapid and effective identification of nephrotoxic drug mechanisms is yet a challenging task arising from the complexity and diversity of various nephrotoxic mechanisms. Herein, we have constructed a polydopamine-polyethyleneimine/quantum dots sensor to instantaneously read out the nephrotoxic drugs mechanisms based on the disparate cell surface phenotypes. Cell surface components induced by multiple nephrotoxic drugs can change the fluorescence emission of multicolor quantum dots, generating their corresponding fluorescent fingerprints. The fluorescence response signatures induced by different nephrotoxic agents are gained with 84% accuracy via linear discriminant analysis. Furthermore, taking the time-toxicity relationship into consideration, dynamic fluorescent fingerprint is obtained through continuous monitoring the progress of renal cell damage, achieving 100% precise classification for nephrotoxic mechanisms of four types of antibiotics. Notably, the fluorescent fingerprint-based high-throughput sensor has been demonstrated by successfully distinguishing nephrotoxic drugs in seconds, employing a promising protocol to discriminate the specific mechanism of nephrotoxic drugs, as well as drug safety evaluation.


Subject(s)
Pharmaceutical Preparations , Quantum Dots , Anti-Bacterial Agents , Fluorescence , Polyethyleneimine , Quantum Dots/toxicity , Spectrometry, Fluorescence
20.
Acta Biomater ; 127: 287-297, 2021 06.
Article in English | MEDLINE | ID: mdl-33831570

ABSTRACT

Organic fluorophores/photosensitizers have been widely used in biological imaging and photodynamic and photothermal combination therapy in the first near-infrared (NIR-I) window. However, their applications in the second near-infrared (NIR-II) window are still limited primarily due to low fluorescence quantum yields (QYs). Here, a boron dipyrromethene (BDP) is created as a molecularly engineered thiophene donor unit with high QYs to the redshift. Thiophene insertion initiates substantial redshifts of the absorbance as compared to its counterparts in which iodine is introduced. The fluorescent molecule can be triggered by an NIR laser with a single wavelength, thereby producing emission in the NIR-II windows. Single NIR laser-triggered phototherapeutic nanoparticles (NPs) are developed by encapsulating the BDP and the chemotherapeutic drug docetaxel (DTX) by using a synthetic amphiphilic poly(styrene-co-chloromethyl styrene)-graft-poly(ethylene glycol) functionalized with folic acid (FA). These BDP-T-N-DTX-FA NPs not only show superior solubility and high singlet oxygen QY (ΦΔ=62%) but also demonstrate single NIR laser-triggered multifunctional characteristics. After intravenous administration of the NPs into 4T1 tumor-bearing mice, the accumulation of the NPs in the tumor showed a high signal-to-background ratio (11.8). Furthermore, 4T1 tumors in mice were almost eradicated by DTX released from the BDP-T-N-DTX-FA NPs under single NIR laser excitation and the combination of photodynamic therapy (PDT) and photothermic therapy (PTT). STATEMENT OF SIGNIFICANCE: The application of organic photosensitizers is still limited primarily due to low fluorescence quantum yields (QYs) in the second near-infrared (NIR-II) window. Here, a boron dipyrromethene (BDP) as a molecularly engineered thiophene donor unit with high QYs to the redshift is created. Phototherapeutic nanoparticles (NPs) are developed by encapsulating the BDP and docetaxel (DTX) using a synthetic amphiphilic poly(styrene-co-chloromethyl styrene)-graft-poly(ethylene glycol) functionalized with folic acid (FA). These BDP-T-N-DTX-FA NPs not only show high singlet oxygen QY (ΦΔ=62%) but also demonstrate single NIR laser-triggered multifunctional characteristics and a high signal-to-background ratio (11.8). Furthermore, 4T1 tumors in mice were almost eradicated by DTX released from the BDP-T-N-DTX-FA NPs under single NIR laser excitation and the PDT/PTT combination therapy.


Subject(s)
Nanoparticles , Photochemotherapy , Animals , Cell Line, Tumor , Mice , Optical Imaging , Photosensitizing Agents/pharmacology , Thiophenes/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...