Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Bioresour Technol ; 408: 131151, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39053599

ABSTRACT

This research evaluated a microalgae consortium (MC) in a pilot-scale tubular photobioreactor for municipal wastewater (MWW) treatment, compared with an aeration column photobioreactor. Transitioning from suspended MC to a microalgae-microbial biofilm (MMBF) maintained treatment performance despite increasing influent from 50 L to 150 L in a 260 L system. Carbon and nitrogen removal were effective, but phosphorus removal varied due to biofilm shading and the absence of phosphorus-accumulating organisms. High influent flow caused MMBF detachment due to shear stress. Stabilizing and re-establishing the MMBF showed that a stable phycosphere influenced microbial diversity and interactions, potentially destabilizing the MMBF. Heterotrophic nitrification-aerobic denitrification bacteria were crucial for MC equilibrium. Elevated gene expression related to nitrogen fixation, organic nitrogen metabolism, and nitrate reduction confirmed strong microalgal symbiosis, highlighting MMBF's treatment potential. This study supports the practical application of microalgae in wastewater treatment.


Subject(s)
Biofilms , Denitrification , Heterotrophic Processes , Microalgae , Nitrogen , Photobioreactors , Wastewater , Microalgae/metabolism , Wastewater/microbiology , Photobioreactors/microbiology , Nitrogen/metabolism , Phosphorus , Water Purification/methods , Aerobiosis , Carbon/metabolism , Carbon/pharmacology , Waste Disposal, Fluid/methods
2.
Chemosphere ; 340: 139910, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37611753

ABSTRACT

In order to refine the treatment of microalgae consortium (MC) for municipal wastewater (MWW) during the winter, this study investigated the effectiveness of tubular and aeration column photobioreactors (TPBR and APBR) in wastewater treatment plant (WWTP) during winter by two start-up modes: microalgae/microalgae-activated sludge (AS). The operation results showed that under 5.7-13.1 °C, TPBR enhanced the assimilation of N and P pollutant by microalgal accumulation, meeting the Chinese discharge standard within 24 h (NH4+-N, TP, and COD ≤8.0, 0.5, and 50 mg·L-1). The microbial community profiles were identified and showed that inoculating AS under low-temperature still promoted bacterial interspecific association, but influenced by the inhibition of microbial diversity by the homogeneous circulation of TPBR, the nitrogen transfer function of MC was lower than that of APBR at low temperatures, except nitrogen fixation (K02588), nitrosification (K10944, K10945, and K10946), assimilatory nitrate reduction (K00366), and ammonification (K01915 and K05601). And the intermittent aeration in the APBR was still beneficial in increasing microbial diversity, which was more beneficial for reducing COD through microbial collaboration. In the treatment, the cryotolerant MGPM were Delftia, Romboutsia, Rhizobiales, and Bacillus, and the cold stress-related genes that were highly up-regulated were defense signaling molecules (K03671 and K00384), cold shock protein gene (K03704), and cellular protector (K01784) were present in both PBRs. This study provided a reference for the feasibility of the low temperature treatment of MC with the different types of PBR, which improved the application of wastewater treatment in more climatic environments.


Subject(s)
Microalgae , Microbiota , Photobioreactors , Temperature
3.
Bioresour Technol ; 374: 128733, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36774984

ABSTRACT

Microalgae consortium is a promising technology for achieving low-carbon and resource utilization goals in municipal wastewater treatment. However, little is known about how the consortium affects the treatment performance in the startup stage of co-cultivation. Herein, photobioreactors were constructed with different contents of microalgae and activated sludge (AS) (wt.microalgae: wt.AS ≥ 50 %). The results showed that the concentration of microalgae increased by more than 20 % with AS, and the effluents were close or lower than Chinese discharge standards within HRT 24 h (NH4+-N, TP, and COD ≤ 5.0, 0.5, and 50 mg L-1). Furthermore, the co-occurrence pattern of microbial populations experienced inhibition-reconstruction and reconstruction-inhibition processes, respectively, and the inter-species relationship was directly related to the effluent quality. Microalgal concentration and temperature were the key factors to the microbial community profiling. The potential microorganisms in AS could promote the growth of microalgae, and the bacteria and fungi formed co-metabolism through functional complementation.


Subject(s)
Microalgae , Microbiota , Wastewater , Sewage/microbiology , Photobioreactors , Biomass
SELECTION OF CITATIONS
SEARCH DETAIL