Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Front Microbiol ; 14: 1216018, 2023.
Article in English | MEDLINE | ID: mdl-38029129

ABSTRACT

Introduction: Bananas are not only an important food crop for developing countries but also a major trading fruit for tropical and semitropical regions, maintaining a huge trade volume. Fusarium wilt of banana (FWB) caused by Fusarium oxysporum f. sp. cubense is becoming a serious challenge to the banana industry globally. Biological control has the potential to offer both effective and sustainable measures for this soil-borne disease. Methods: In order to explore the biocontrol effects of the biological agent Bacillus amyloliquefaciens QST713 strain on banana plants, two cultivars, Brazilian and Yunjiao No. 1, with varied resistance to FWB, were used in greenhouse pot experiments. Results: Results showed that the plant height and pseudostem diameter of banana-susceptible cultivar Brazilian increased by 11.68% and 11.94%, respectively, after QST713 application, while the plant height and pseudostem diameter of resistant cultivar Yunjiao No. 1 increased by 14.87% and 12.51%, respectively. The fresh weight of the two cultivars increased by 20.66% and 36.68%, respectively, indicating that this biological agent has potential effects on plant growth. Analysis of the rhizosphere soil microbial communities of two different cultivars of banana plants showed that TR4 infection and B. amyloliquefaciens QST713 strain application significantly affected the bacterial and fungal diversity of Yunjiao No. 1, but not in the cultivar Brazilian. In addition, TR4 infection and QST713 application changed the bacterial community composition of both banana cultivars, and the fungal community composition of Yunjiao No. 1 also changed significantly. Relevance analysis indicated that the relative richness of Bacillus and Pseudomonas in the rhizosphere of both cultivars increased significantly after QST713 application, which had a good positive correlation with plant height, pseudostem girth, aboveground fresh weight, leaf length, and leaf width. Discussion: Therefore, the outcome of this study suggests that the biological agent QST713 strain has potential application in banana production for promoting plant growth and modification of soil microbial communities, particularly in the TR4-infected field.

2.
Int J Mol Sci ; 24(18)2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37762563

ABSTRACT

The challenge of mitigating the decline in both yield and fruit quality due to the intrusion of powdery mildew (PM) fungus looms as a pivotal concern in the domain of bitter melon cultivation. Yet, the intricate mechanisms that underlie resistance against this pathogen remain inscrutable for the vast majority of bitter melon variants. In this inquiry, we delve deeply into the intricate spectrum of physiological variations and transcriptomic fluctuations intrinsic to the PM-resistant strain identified as '04-17-4' (R), drawing a sharp contrast with the PM-susceptible counterpart, designated as '25-15' (S), throughout the encounter with the pathogenic agent Podosphaera xanthii. In the face of the challenge presented by P. xanthii, the robust cultivar displays an extraordinary capacity to prolong the initiation of the pathogen's primary growth stage. The comprehensive exploration culminates in the discernment of 6635 and 6954 differentially expressed genes (DEGs) in R and S strains, respectively. Clarification through the lens of enrichment analyses reveals a prevalence of enriched DEGs in pathways interconnected with phenylpropanoid biosynthesis, the interaction of plants with pathogens, and the signaling of plant hormones. Significantly, in the scope of the R variant, DEGs implicated in the pathways of plant-pathogen interaction phenylpropanoid biosynthesis, encompassing components such as calcium-binding proteins, calmodulin, and phenylalanine ammonia-lyase, conspicuously exhibit an escalated tendency upon the encounter with P. xanthii infection. Simultaneously, the genes governing the synthesis and transduction of SA undergo a marked surge in activation, while their counterparts in the JA signaling pathway experience inhibition following infection. These observations underscore the pivotal role played by SA/JA signaling cascades in choreographing the mechanism of resistance against P. xanthii in the R variant. Moreover, the recognition of 40 P. xanthii-inducible genes, encompassing elements such as pathogenesis-related proteins, calmodulin, WRKY transcription factors, and Downy mildew resistant 6, assumes pronounced significance as they emerge as pivotal contenders in the domain of disease control. The zenith of this study harmonizes multiple analytical paradigms, thus capturing latent molecular participants and yielding seminal resources crucial for the advancement of PM-resistant bitter melon cultivars.


Subject(s)
Momordica charantia , Humans , Momordica charantia/genetics , Transcriptome , Calmodulin , Signal Transduction , Erysiphe
3.
Front Plant Sci ; 14: 1145837, 2023.
Article in English | MEDLINE | ID: mdl-36938065

ABSTRACT

Fusarium wilt of banana, especially Tropical Race 4 (TR4) is a major factor restricting banana production. Developing a resistant cultivar and inducing plant defenses by elicitor application are currently two of the best options to control this disease. Isotianil is a monocarboxylic acid amide that has been used as a fungicide to control rice blast and could potentially induce systemic acquired resistance in plants. To determine the control effect of elicitor isotianil on TR4 in different resistant cultivars, a greenhouse pot experiment was conducted and its results showed that isotianil could significantly alleviate the symptoms of TR4, provide enhanced disease control on the cultivars 'Baxi' and 'Yunjiao No.1' with control effect 50.14% and 56.14%, respectively. We compared the infection processes in 'Baxi' (susceptible cultivars) and 'Yunjiao No.1' (resistant cultivars) two cultivars inoculated with pathogen TR4. The results showed that TR4 hyphae could rapidly penetrate the cortex into the root vascular bundle for colonization, and the colonization capacity in 'Baxi' was significantly higher than that in 'Yunjiao No.1'. The accumulation of a large number of starch grains was observed in corms cells, and further analysis showed that the starch content in 'Yunjiao No. 1' as resistant cultivar was significantly higher than that in 'Baxi' as susceptible cultivar, and isotianil application could significantly increase the starch content in 'Baxi'. Besides, a mass of tyloses were observed in the roots and corms and these tyloses increased after application with isotianil. Furthermore, the total starch and tyloses contents and the control effect in the corms of 'Yunjiao No.1' was higher than that in the 'Baxi'. Moreover, the expression levels of key genes for plant resistance induction and starch synthesis were analyzed, and the results suggested that these genes were significantly upregulated at different time points after the application of isotianil. These results suggest that there are significant differences between cultivars in response to TR4 invasion and plant reactions with respect to starch accumulation, tyloses formation and the expression of plant resistance induction and starch synthesis related genes. Results also indicate that isotianil application may contribute to disease control by inducing host plant defense against TR4 infection and could be potentially used together with resistant cultivar as integrated approach to manage this destructive disease. Further research under field conditions should be included in the next phases of study.

4.
Genetica ; 151(2): 87-96, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36652142

ABSTRACT

Plant hormone abscisic acid (ABA) plays an important role in plant growth, development and response to biotic / abiotic stressors. Thus, it is necessary to investigate the crucial genes associated with ABA synthesis. Currently, the carotenoid cleavage oxygenases (CCOs) family that function as the key step for ABA synthesis are not well understood in banana. In this study, 13 MaCCO genes and 12 MbCCO genes, divided into NCED subgroup and CCD subgroup, were identified from the banana genome, and their evolutionary relationship, protein motifs, and gene structures were also determined. Transcriptomic analysis suggested the involvement of CCO genes in banana development, ripening, and response to abiotic and biotic stressors, and homologous gene pairs showed homoeologue expression bias in the A or B subgenome. Our results identified MaNCED3A, MaCCD1, and MbNCED3B as the genes with the highest expression during fruit development and ripening. MaNCED5 / MbNCED5 and MaNCED9A might respond to abiotic stress, and MaNCED3A, 3B, 6 A, 9 A, and MbNCED9A showed transcriptional changes that could be a response to Foc4 infection. These findings may contribute to the characterization of key enzymes involved in ABA biosynthesis, as well as to identify potential targets for the genetic improvement of banana.


Subject(s)
Musa , Musa/genetics , Musa/metabolism , Abscisic Acid/metabolism , Gene Expression Profiling/methods , Plant Development , Gene Expression Regulation, Plant , Fruit/genetics , Fruit/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
5.
J Agric Food Chem ; 70(40): 12830-12840, 2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36183268

ABSTRACT

Phytohormone abscisic acid (ABA) influences the shelf life of fruit, vegetables, and tubers after harvest. However, little is known about the core signaling module involved in ABA's control of the postharvest physiological process. Exogenous ABA alleviated postharvest physiological deterioration (PPD) symptoms of sliced cassava tuberous roots, increased endogenous ABA levels, and reduced endogenous H2O2 content. The specific ABA signaling module during the PPD process was identified as MePYL6-MePP2C16-MeSnRK2.1-MebZIP5/34. MebZIP5/MebZIP34 directly binds to and activates the promoters of MeGRX6/MeMDAR1 through ABRE elements. Exogenous ABA significantly induced the expression of genes involved in this module, glutaredoxin content, and monodehydroascorbate reductase activity. We presented a hypothesis suggesting that MePYL6-MePP2C16-MeSnRK2.1-MebZIP5/34-MeGRX6/MeMDAR1 is involved in ABA-induced antioxidative capacity, thus alleviating PPD symptoms in cassava tuberous roots. The identification of the specific signaling module involved in ABA's control of PPD provides a basis and potential targets for extending the shelf life of cassava tuberous roots.


Subject(s)
Abscisic Acid , Manihot , Abscisic Acid/metabolism , Gene Expression Regulation, Plant , Glutaredoxins/genetics , Hydrogen Peroxide/metabolism , Manihot/metabolism , Plant Growth Regulators/pharmacology , Plant Roots/metabolism
6.
Ann Bot ; 124(7): 1185-1198, 2020 01 06.
Article in English | MEDLINE | ID: mdl-31282544

ABSTRACT

BACKGROUND AND AIMS: The nuclear factor Y (NF-Y) transcription factor complex is important in plant growth, development and stress response. Information regarding this transcription factor complex is limited in cassava (Manihot esculenta). In this study, 15 MeNF-YAs, 21 MeNF-YBs and 15 MeNF-YCs were comprehensively characterized during plant defence. METHODS: Gene expression in MeNF-Ys was examined during interaction with the bacterial pathogen Xanthomonas axonopodis pv. manihotis (Xam). The yeast two-hybrid system was employed to investigate protein-protein interactions in the heterotrimeric NF-Y transcription factor complex. The in vivo roles of MeNF-Ys were revealed by virus-induced gene silencing (VIGS) in cassava. KEY RESULTS: The regulation of MeNF-Ys in response to Xam indicated their possible roles in response to cassava bacterial blight. Protein-protein interaction assays identified the heterotrimeric NF-Y transcription factor complex (MeNF-YA1/3, MeNF-YB11/16 and MeNF-YC11/12). Moreover, the members of the heterotrimeric NF-Y transcription factor complex were located in the cell nucleus and conferred transcriptional activation activity to the CCAAT motif. Notably, the heterotrimeric NF-Y transcription factor complex positively regulated plant disease resistance to Xam, confirmed by a disease phenotype in overexpressing plants in Nicotiana benthamiana and VIGS in cassava. Consistently, the heterotrimeric NF-Y transcription factor complex positively regulated the expression of pathogenesis-related genes (MePRs). CONCLUSIONS: The NF-Y transcription factor complex (MeNF-YA1/3, MeNF-YB11/16 and MeNF-YC11/12) characterized here was shown to play a role in transcriptional activation of MePR promoters, contributing to the plant defence response in cassava.


Subject(s)
Manihot , Xanthomonas axonopodis , CCAAT-Binding Factor , Disease Resistance , Humans , Plant Proteins
8.
Physiol Plant ; 168(1): 88-97, 2020 Jan.
Article in English | MEDLINE | ID: mdl-30950065

ABSTRACT

Auxin/indole-3-acetic acid proteins (Aux/IAAs) play important roles in auxin signaling pathways, with extensive involvement in plant development and plant response to abiotic and biotic stresses. Manihot esculenta (Cassava) is one of the most important biomass energy crops in tropical regions; however, the information about Aux/IAA proteins remain limited in cassava. In this study, 37 MeAux/IAA gene family members were identified in cassava and a phylogenetic analysis was performed. The transcript levels of MeAux/IAAs were commonly regulated by the pathogen Xanthomonas axonopodis pv manihotis (Xam), and some of them were specifically localized to the nucleus. Moreover, the overexpression of MeAux/IAAs confers an improved disease resistance against Xam in Nicotiana benthamiana, while MeAux/IAAs-silenced plants show disease sensitivity against Xam in cassava, as evidenced by the leaf phenotype and leaf bacterial population. Consistent with the disease resistance, MeAux/IAAs regulated the transcript levels of PATHOGENESIS-RELATED GENES (MePRs), reactive oxygen species accumulation and callose development in the plants' defense response. Taken together, gene profile and functional analysis identified several MeAux/IAAs as novel members in plant disease resistance, providing important information for further utilization of MeAux/IAAs.


Subject(s)
Disease Resistance , Indoleacetic Acids , Manihot/genetics , Plant Diseases/genetics , Plant Proteins/genetics , Gene Expression Regulation, Plant , Phylogeny , Xanthomonas/pathogenicity
9.
Int J Biol Macromol ; 120(Pt B): 2279-2284, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30144551

ABSTRACT

A biopolymer membrane chitosan-collagen/organomontmorillonite loaded with Callicarpa nudiflora (CS-COL/CN-OMMT) was prepared as a wound dressing. Three composite membranes including chitosan-collagen (CS-COL), chitosan-collagen/montmorillonite (CS-COL/MMT) and chitosan-collagen/organomontmorillonite (CS-COL/OMMT) were studied from physicochemical, swelling ratio, degradation ratio in vitro and moisture permeability properties. The CS-COL/OMMT composite membrane with porous layered structure exhibited a significantly higher swelling ratio, lower degradation ratio and rather excellent moisture permeability properties than other membranes. Callicarpa nudiflora were loaded on CS-COL/OMMT composite membrane to improve antibacterial activity from 20.20 ±â€¯0.50% to 68.60 ±â€¯0.10%.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bandages/microbiology , Bentonite/chemistry , Callicarpa/chemistry , Chitosan/chemistry , Collagen/chemistry , Membranes, Artificial , Anti-Bacterial Agents/chemistry , Permeability , Steam , Wound Healing/drug effects
10.
Genes (Basel) ; 9(2)2018 Feb 20.
Article in English | MEDLINE | ID: mdl-29461467

ABSTRACT

GENERAL REGULATORY FACTOR (GRF) proteins play vital roles in the regulation of plant growth, development, and response to abiotic stress. However, little information is known for this gene family in cassava (Manihot esculenta). In this study, 15 MeGRFs were identified from the cassava genome and were clustered into the ε and the non-ε groups according to phylogenetic, conserved motif, and gene structure analyses. Transcriptomic analyses showed eleven MeGRFs with constitutively high expression in stems, leaves, and storage roots of two cassava genotypes. Expression analyses revealed that the majority of GRFs showed transcriptional changes under cold, osmotic, salt, abscisic acid (ABA), and H2O2 treatments. Six MeGRFs were found to be commonly upregulated by abiotic stress, ABA, and H2O2 treatments, which may be the converging points of multiple signaling pathways. Interaction network analysis identified 18 possible interactors of MeGRFs. Taken together, this study elucidates the transcriptional control of MeGRFs in tissue development and the responses of abiotic stress and related signaling in cassava. Some constitutively expressed, tissue-specific, and abiotic stress-responsive candidate MeGRF genes were identified for the further genetic improvement of crops.

SELECTION OF CITATIONS
SEARCH DETAIL