Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 91
Filter
1.
Article in English | MEDLINE | ID: mdl-38742659

ABSTRACT

BACKGROUND: Daily physical activity patterns differ by Alzheimer's disease (AD) status and might signal cognitive risk. It is critical to understand whether patterns are disrupted early in the AD pathological process. Yet, whether established AD risk markers (ß-amyloid (Aß) or APOE-ε4) are associated with differences in objectively measured activity patterns among cognitively unimpaired older adults is unclear. METHODS: Wrist accelerometry, brain Aß (+/-), and APOE-ε4 genotype were collected in 106 (Aß) and 472 (APOE-ε4) participants [mean age 76 (SD: 8.5) or 75 (SD: 9.2) years, 60% or 58% women] in the BLSA. Adjusted linear and function-on-scalar regression models examined whether Aß or APOE-ε4 status was cross-sectionally associated with activity patterns (amount, variability, or fragmentation) overall and by time-of-day, respectively. Differences in activity patterns by combinations of Aß and APOE-ε4 status were descriptively examined (n=105). RESULTS: There were no differences in any activity pattern by Aß or APOE-ε4 status overall. Aß+ was associated with lower total amount and lower within-day variability of physical activity overnight and early evening, and APOE-ε4 carriers had higher total amount of activity in the evening and lower within-day variability of activity in the morning. Diurnal curves of activity were blunted among those with Aß+ regardless of APOE-ε4 status, but only when including older adults with MCI/dementia. CONCLUSIONS: Aß+ in cognitively unimpaired older adults might manifest as lower amount and variability of daily physical activity, particularly during overnight/evening hours. Future research is needed to examine changes in activity patterns in larger samples and by other AD biomarkers.

2.
Sci Rep ; 14(1): 9339, 2024 04 23.
Article in English | MEDLINE | ID: mdl-38653745

ABSTRACT

Sensory impairment and brain atrophy is common among older adults, increasing the risk of dementia. Yet, the degree to which multiple co-occurring sensory impairments (MSI across vision, proprioception, vestibular function, olfactory, and hearing) are associated with brain morphometry remain unexplored. Data were from 208 cognitively unimpaired participants (mean age 72 ± 10 years; 59% women) enrolled in the Baltimore Longitudinal Study of Aging. Multiple linear regression models were used to estimate cross-sectional associations between MSI and regional brain imaging volumes. For each additional sensory impairment, there were associated lower orbitofrontal gyrus and entorhinal cortex volumes but higher caudate and putamen volumes. Participants with MSI had lower mean volumes in the superior frontal gyrus, orbitofrontal gyrus, superior parietal lobe, and precuneus compared to participants with < 2 impairments. While MSI was largely associated with lower brain volumes, our results suggest the possibility that MSI was associated with higher basal ganglia volumes. Longitudinal analyses are needed to evaluate the temporality and directionality of these associations.


Subject(s)
Aging , Brain , Humans , Female , Aged , Male , Brain/diagnostic imaging , Brain/pathology , Longitudinal Studies , Cross-Sectional Studies , Aging/physiology , Aging/pathology , Baltimore , Aged, 80 and over , Magnetic Resonance Imaging , Middle Aged , Organ Size , Atrophy
3.
Age Ageing ; 53(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38615247

ABSTRACT

BACKGROUND: Lower skeletal muscle mitochondrial function is associated with future cognitive impairment and mobility decline, but the biological underpinnings for these associations are unclear. We examined metabolomic markers underlying skeletal muscle mitochondrial function, cognition and motor function. METHODS: We analysed data from 560 participants from the Baltimore Longitudinal Study of Aging (mean age: 68.4 years, 56% women, 28% Black) who had data on skeletal muscle oxidative capacity (post-exercise recovery rate of phosphocreatine, kPCr) via 31P magnetic resonance spectroscopy and targeted plasma metabolomics using LASSO model. We then examined which kPCr-related markers were also associated with cognition and motor function in a larger sample (n = 918, mean age: 69.4, 55% women, 27% Black). RESULTS: The LASSO model revealed 24 metabolites significantly predicting kPCr, with the top 5 being asymmetric dimethylarginine, lactic acid, lysophosphatidylcholine a C18:1, indoleacetic acid and triacylglyceride (17:1_34:3), also significant in multivariable linear regression. The kPCr metabolite score was associated with cognitive or motor function, with 2.5-minute usual gait speed showing the strongest association (r = 0.182). Five lipids (lysophosphatidylcholine a C18:1, phosphatidylcholine ae C42:3, cholesteryl ester 18:1, sphingomyelin C26:0, octadecenoic acid) and 2 amino acids (leucine, cystine) were associated with both cognitive and motor function measures. CONCLUSION: Our findings add evidence to the hypothesis that mitochondrial function is implicated in the pathogenesis of cognitive and physical decline with aging and suggest that targeting specific metabolites may prevent cognitive and mobility decline through their effects on mitochondria. Future omics studies are warranted to confirm these findings and explore mechanisms underlying mitochondrial dysfunction in aging phenotypes.


Subject(s)
Cognitive Dysfunction , Lysophosphatidylcholines , Female , Humans , Aged , Male , Longitudinal Studies , Muscle, Skeletal , Cognition
4.
J Am Med Dir Assoc ; 25(3): 480-487.e2, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38307123

ABSTRACT

OBJECTIVES: To identify cognitive and health profiles of cognitively impaired older adults with the presence of prior mobility impairment, which may represent a specific pathway to the development of cognitive impairment or dementia. DESIGN: Retrospective longitudinal study. SETTING AND PARTICIPANTS: In adults aged ≥65 years who developed cognitive impairment or dementia, we compared cognitive and health profiles of those who did (n = 57) and did not (n = 86) experience slow gait up to 14 years before symptom onset. Measures of cognitive and biomarkers assessed longitudinally over an average of 7 years before symptom onset were compared between groups using linear mixed effects models, adjusted age, sex, race, and additionally adjusted for education for cognitive outcomes. RESULTS: Compared to those without prior slow gait, those with slow gait had lower Digit Symbol Substitution Test and Pegboard dominant and nondominant hand performance. The slow gait group also had greater body mass index (BMI), waist, systolic blood pressure, lower high-density lipoprotein and low-density lipoprotein, and lower lysophosphatidylcholine 18:2, a lipid associated with mitochondrial function, and showed greater increases in 2-hour glucose levels of an oral glucose tolerance test. The slow gait group was more likely to take medication for hypertension and hypercholesterolemia. CONCLUSIONS AND IMPLICATIONS: During the presymptomatic stage, cognitively impaired older persons who experience prior slow gait are more likely to have deficits in psychomotor speed and manual dexterity, an unfavorable metabolic and vascular profile, and lower lipid levels related to mitochondrial function. Older persons who exhibit mobility impairment should be evaluated for metabolic and vascular dysfunction at an early stage, and successful treatment of these conditions may slow down the progression of cognitive impairment or dementia.


Subject(s)
Cognitive Dysfunction , Dementia , Humans , Aged , Aged, 80 and over , Longitudinal Studies , Retrospective Studies , Lipids
5.
Alzheimers Dement ; 20(4): 2653-2661, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38375574

ABSTRACT

INTRODUCTION: Age-related sensory and motor impairment are associated with risk of dementia. No study has examined the joint associations of multiple sensory and motor measures on prevalence of early cognitive impairment (ECI). METHODS: Six hundred fifty participants in the Baltimore Longitudinal Study of Aging completed sensory and motor function tests. The association between sensory and motor function and ECI was examined using structural equation modeling with three latent factors corresponding to multisensory, fine motor, and gross motor function. RESULTS: The multisensory, fine, and gross motor factors were all correlated (r = 0.74 to 0.81). The odds of ECI were lower for each additional unit improvement in the multisensory (32%), fine motor (30%), and gross motor factors (12%). DISCUSSION: The relationship between sensory and motor impairment and emerging cognitive impairment may guide future intervention studies aimed at preventing and/or treating ECI. HIGHLIGHTS: Sensorimotor function and early cognitive impairment (ECI) prevalence were assessed via structural equation modeling. The degree of fine and gross motor function is associated with indicators of ECI. The degree of multisensory impairment is also associated with indicators of ECI.


Subject(s)
Cognitive Dysfunction , Humans , Longitudinal Studies , Cognitive Dysfunction/epidemiology , Aging , Baltimore
6.
Aging Cell ; 23(4): e14090, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38287525

ABSTRACT

Aging is increasingly thought to involve dysregulation of metabolism in multiple organ systems that culminate in decreased functional capacity and morbidity. Here, we seek to understand complex interactions among metabolism, aging, and systems-wide phenotypes across the lifespan. Among 2469 adults (mean age 74.7 years; 38% Black) in the Health, Aging and Body Composition study we identified metabolic cross-sectionally correlates across 20 multi-dimensional aging-related phenotypes spanning seven domains. We used LASSO-PCA and bioinformatic techniques to summarize metabolome-phenome relationships and derive metabolic scores, which were subsequently linked to healthy aging, mortality, and incident outcomes (cardiovascular disease, disability, dementia, and cancer) over 9 years. To clarify the relationship of metabolism in early adulthood to aging, we tested association of these metabolic scores with aging phenotypes/outcomes in 2320 participants (mean age 32.1, 44% Black) of the Coronary Artery Risk Development in Young Adults (CARDIA) study. We observed significant overlap in metabolic correlates across the seven aging domains, specifying pathways of mitochondrial/cellular energetics, host-commensal metabolism, inflammation, and oxidative stress. Across four metabolic scores (body composition, mental-physical performance, muscle strength, and physical activity), we found strong associations with healthy aging and incident outcomes, robust to adjustment for risk factors. Metabolic scores for participants four decades younger in CARDIA were related to incident cardiovascular, metabolic, and neurocognitive performance, as well as long-term cardiovascular disease and mortality over three decades. Conserved metabolic states are strongly related to domain-specific aging and outcomes over the life-course relevant to energetics, host-commensal interactions, and mechanisms of innate immunity.


Subject(s)
Cardiovascular Diseases , Healthy Aging , Young Adult , Humans , Adult , Aged , Longevity , Aging , Risk Factors
7.
J Med Genet ; 61(5): 435-442, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38191510

ABSTRACT

BACKGROUND: Brain iron deposition is common in dementia, but whether serum iron is a causal risk factor is unknown. We aimed to determine whether genetic predisposition to higher serum iron status biomarkers increased risk of dementia and atrophy of grey matter. METHODS: We analysed UK Biobank participants clustered into European (N=451284), African (N=7477) and South Asian (N=9570) groups by genetic similarity to the 1000 genomes project. Using Mendelian randomisation methods, we estimated the association between genetically predicted serum iron (transferrin saturation [TSAT] and ferritin), grey matter volume and genetic liability to clinically defined dementia (including Alzheimer's disease [AD], non-AD dementia, and vascular dementia) from hospital and primary care records. We also performed time-to-event (competing risks) analysis of the TSAT polygenic score on risk of clinically defined non-AD dementia. RESULTS: In Europeans, higher genetically predicted TSAT increased genetic liability to dementia (Odds Ratio [OR]: 1.15, 95% Confidence Intervals [CI] 1.04 to 1.26, p=0.0051), non-AD dementia (OR: 1.27, 95% CI 1.12 to 1.45, p=0.00018) and vascular dementia (OR: 1.37, 95% CI 1.12 to 1.69, p=0.0023), but not AD (OR: 1.00, 95% CI 0.86 to 1.15, p=0.97). Higher TSAT was also associated with increased risk of non-AD dementia in participants of African, but not South Asian groups. In survival analysis using a TSAT polygenic score, the effect was independent of apolipoprotein-E ε4 genotype (with adjustment subdistribution Hazard Ratio: 1.74, 95% CI 1.33 to 2.28, p=0.00006). Genetically predicted TSAT was associated with lower grey matter volume in caudate, putamen and thalamus, and not in other areas of interest. DISCUSSION: Genetic evidence supports a causal relationship between higher TSAT and risk of clinically defined non-AD and vascular dementia, in European and African groups. This association appears to be independent of apolipoprotein-E ε4.


Subject(s)
Dementia, Vascular , Iron , Humans , Biological Specimen Banks , UK Biobank , Risk Factors , Biomarkers , Apolipoproteins , Mendelian Randomization Analysis
8.
Article in English | MEDLINE | ID: mdl-38251633

ABSTRACT

Iron overload is implicated in mitochondrial dysfunction. Some iron and mitochondria-related measures show sex differences. It is unclear whether mitochondrial DNA copy number (mtDNAcn) from blood associated with iron depositions in the brain or liver and whether the relationship differs by sex. In this population-based study, we find that among community-dwelling adults, lower mtDNAcn assessed in blood is associated with higher brain iron in basal ganglia and hippocampus and more liver fat, and not with brain volumes or liver iron. Interestingly, the association between mtDNAcn and brain iron in basal ganglia is prominent in men. Our observations lead to the hypothesis that mechanisms connecting mitochondrial dysfunction and iron overload may differ between brain and liver and differ by sex.

9.
Aging Cell ; 23(1): e13902, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37350292

ABSTRACT

The study of age-related biomarkers from different biofluids and tissues within the same individual might provide a more comprehensive understanding of age-related changes within and between compartments as these changes are likely highly interconnected. Understanding age-related differences by compartments may shed light on the mechanism of their reciprocal interactions, which may contribute to the phenotypic manifestations of aging. To study such possible interactions, we carried out a targeted metabolomic analysis of plasma, skeletal muscle, and urine collected from healthy participants, age 22-92 years, and identified 92, 34, and 35 age-associated metabolites, respectively. The metabolic pathways that were identified across compartments included inflammation and cellular senescence, microbial metabolism, mitochondrial health, sphingolipid metabolism, lysosomal membrane permeabilization, vascular aging, and kidney function.


Subject(s)
Aging , Metabolomics , Humans , Young Adult , Adult , Middle Aged , Aged , Aged, 80 and over , Cross-Sectional Studies , Biomarkers/metabolism , Cellular Senescence
10.
J Laparoendosc Adv Surg Tech A ; 34(2): 182-188, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37902957

ABSTRACT

Purpose: To investigate the use of ureteroscope-assisted laparoscopic surgery (UALS) in treating symptomatic prostatic utricle (PU) in children. Materials and Methods: Data on surgically treated cases of PU at the Department of Urology in Hunan Children's Hospital between September 2014 and September 2022 were retrospectively collected and analyzed. The diagnosis was confirmed by cystourethroscopy followed by ureteroscopy, and PU was excised by ureteroscope-assisted laparoscopy. Results: A total of 21 patients with PU were enrolled in this study. The median age of the patients at surgery was 8.1 (4.6-11.5) years. Karyotyping was available for 15 children: 13 (86.7%) were 46XY, 1 (6.7%) was 45X/46XY, and 1 (6.7%) was 45X/46XY/47XYY. The median length of the PU was 5.0 (4.1-7.1) cm. Nineteen patients underwent only ureteroscope-assisted laparoscopic excision, whereas 2 also had a perineal incision. All excisions were successfully performed. The median intraoperative blood loss was 25.0 (20.0-37.5) mL. The median hospital stay and follow-up durations were 18.0 (14.5-25.0) days and 24.0 (13.5-49.0) months, respectively. The patients reported no postoperative clinical symptoms. Conclusion: UALS allows for accurate patient positioning and thorough exposure of the anatomical structures, and it is a safe, effective, and minimally invasive treatment for PU in children.


Subject(s)
Laparoscopy , Ureteroscopes , Male , Child , Humans , Retrospective Studies , Prostate/surgery , Saccule and Utricle , Treatment Outcome
11.
Article in English | MEDLINE | ID: mdl-37837441

ABSTRACT

BACKGROUND: Poor motor function is associated with brain atrophy and cognitive impairment. Less is known about the relationship between motor domains and brain atrophy and whether associations are affected by cerebrovascular burden and/or physical activity. METHODS: We analyzed data from 726 Baltimore Longitudinal Study of Aging participants (mean age 70.6 ±â€…10.1 years, 56% women, 27% Black), 525 of whom had repeat MRI scans over an average of 5.0 ±â€…2.1 years. Two motor domains, manual dexterity and gross motor, were operationalized as latent variables. Associations between the latent variables and cortical and subcortical brain volumes of interest were examined using latent growth curve modeling, adjusted for demographics, white matter hyperintensities, and physical activity. RESULTS: Both higher manual dexterity and gross motor function were cross-sectionally associated with smaller ventricular volume and greater white matter volumes in the frontal, parietal, and temporal lobes (all p < .05). Manual dexterity was also cross-sectionally associated with parietal gray matter (B = 0.14; 95% CI: 0.05, 0.23), hippocampus (B = 0.10; 95% CI: 0.01, 0.20), postcentral gyrus (B = 0.11; 95% CI: 0.01, 0.20), and occipital white matter (B = 0.10; 95% CI: 0.01, 0.21) volumes, and gross motor function with temporal gray matter volume (B = 0.16; 95% CI: 0.05, 0.26). Longitudinally, both higher manual dexterity and gross motor function were associated with less temporal white matter and occipital gray matter atrophy (all p < .05). Manual dexterity was also associated with a slower rate of ventricular enlargement (B = -0.17; 95% CI: -0.29, -0.05) and less atrophy of occipital white matter (B = 0.39; 95% CI: 0.04, 0.71). CONCLUSIONS: Among cognitively normal middle- and older-aged adults, manual dexterity and gross motor function exhibited shared as well as distinct associations with brain atrophy over time.


Subject(s)
Neurodegenerative Diseases , White Matter , Humans , Female , Adult , Middle Aged , Aged , Aged, 80 and over , Male , Brain/pathology , Longitudinal Studies , Gray Matter/diagnostic imaging , Gray Matter/pathology , Aging , White Matter/diagnostic imaging , White Matter/pathology , Magnetic Resonance Imaging , Atrophy
12.
J Cachexia Sarcopenia Muscle ; 15(1): 138-148, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38116708

ABSTRACT

BACKGROUND: Mitochondrial dysfunction may contribute to brain and muscle health through inflammation or fat infiltration in the muscle, both of which are associated with cognitive function and mobility. We aimed to examine the association between skeletal muscle mitochondrial function and cognitive and mobility outcomes and tested the mediation effect of inflammation or fat infiltration. METHODS: We analysed data from 596 Baltimore Longitudinal Study of Aging participants who had concurrent data on skeletal muscle oxidative capacity and cognitive and mobility measures of interest (mean age: 66.1, 55% women, 24% Black). Skeletal muscle oxidative capacity was assessed as post-exercise recovery rate (kPCr) via P31 MR spectroscopy. Fat infiltration was measured as intermuscular fat (IMF) via CT scan and was available for 541 participants. Inflammation markers [IL-6, C-reactive protein (CRP), total white blood cell (WBC), neutrophil count, erythrocyte sedimentation rate (ESR), or albumin] were available in 594 participants. We examined the association of kPCr and cognitive and mobility measures using linear regression and tested the mediation effect of IMF or inflammation using the mediation package in R. Models were adjusted for demographics and PCr depletion. RESULTS: kPCr and IMF were both significantly associated with specific cognitive domains (DSST, TMA-A, and pegboard dominant hand performance) and mobility (usual gait speed, HABCPPB, 400 m walk time) (all P < 0.05). IMF significantly mediated the relationship between kPCr and these cognitive and mobility measures (all P < 0.05, proportion mediated 13.1% to 27%). Total WBC, neutrophil count, and ESR, but not IL-6 or CRP, also mediated at least one of the cognitive and mobility outcomes (all P < 0.05, proportion mediated 9.4% to 15.3%). CONCLUSIONS: Skeletal muscle mitochondrial function is associated with cognitive performance involving psychomotor speed. Muscle fat infiltration and specific inflammation markers mediate the relationship between muscle mitochondrial function and cognitive and mobility outcomes. Future studies are needed to confirm these associations longitudinally and to understand their mechanistic underpinnings.


Subject(s)
Cognition , Muscle, Skeletal , Humans , Female , Aged , Male , Longitudinal Studies , Muscle, Skeletal/metabolism , Inflammation/metabolism , Mitochondria/metabolism , C-Reactive Protein/metabolism
13.
Alzheimers Dement (Amst) ; 15(4): e12501, 2023.
Article in English | MEDLINE | ID: mdl-38026756

ABSTRACT

INTRODUCTION: White matter hyperintensities (WMHs) increase with age and contribute to cognitive and motor function decline. Energy costs for mobility worsen with age, as the energetic cost of walking increases and energetic capacity declines. We examined the cross-sectional associations of multiple measures of walking energetics with WMHs in mid- to late-aged adults. METHODS: A total of 601 cognitively unimpaired adults (mean age 66.9 ± 15.3 years, 54% women) underwent brain magnetic resonance imaging scans and completed standardized slow- and peak-paced walking assessments with metabolic measurement (V̇O2). T1-weighted scans and fluid-attenuated inversion recovery images were used to quantify WMHs. Separate multivariable linear regression models examined associations adjusted for covariates. RESULTS: Lower slow-paced V̇O2 (B = 0.07; P = 0.030), higher peak-paced V̇O2 (B = -0.10; P = 0.007), and lower cost-to-capacity ratio (B = .12; P < 0.0001) were all associated with lower WMH volumes. DISCUSSION: The cost-to-capacity ratio, which describes the percentage of capacity required for ambulation, was the walking energetic measure most strongly associated with WMHs.

14.
Ageing Res Rev ; 92: 102095, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37913831

ABSTRACT

In aging, olfactory deficits have been associated with lower cognition and motor function. Olfactory dysfunction is also one of the earliest features of neurodegenerative disease. A comprehensive review of the neural correlates of olfactive function may reveal mechanisms underlying the associations among olfaction, cognition, motor function, and neurodegenerative diseases. Here, we summarize existing knowledge on the relationship between brain structural and functional measures and olfaction in older adults without and with cognitive impairment, including Alzheimer's disease. We identified 33 eligible studies (30 MRI/DTI,3 fMRI); 31 were cross-sectional, most assessed odor identification, and few examined multiple brain areas. Lower olfactory function was associated with smaller volumes in the temporal lobe (hippocampus,parahippocampal gyrus,fusiform gyrus), olfactory-related regions (piriform cortex,amygdala,entorhinal cortex), pre- and postcentral gyri, and globus pallidus. During aging, olfactory impairment may be associated with pathology in brain areas important for motor function and cognition, especially memory. Future longitudinal studies that include neuroimaging across different brain areas are warranted to determine the neurobiological changes underlying olfactory changes in the aging brain and the progression of neurodegeneration.


Subject(s)
Cognitive Dysfunction , Neurodegenerative Diseases , Humans , Aged , Neurodegenerative Diseases/diagnostic imaging , Neurodegenerative Diseases/pathology , Brain/pathology , Entorhinal Cortex/pathology , Hippocampus/pathology , Temporal Lobe , Magnetic Resonance Imaging/methods , Cognitive Dysfunction/pathology
15.
Nutrients ; 15(19)2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37836476

ABSTRACT

There is evidence that the association of protein intake and frailty may depend on the source of dietary protein. The mechanism underlying this association is not clear. In this study, we explore circulating metabolites as mediators of the relationship between dietary protein and of frailty in participants of the Baltimore Longitudinal Study of Aging (BLSA). Cross-sectional analyses in 735 BLSA participants of associations between plant and animal protein intake and frailty. Usual protein intake from plant and animal sources were estimated with a Food Frequency Questionnaire (FFQ) and frailty was assessed with a 44-item Frailty Index (FI). Compared with the lowest quartile, higher quartiles of plant, but not animal, protein were associated with lower FI. Twenty-five plasma metabolites were associated with plant protein intake; of these, fifteen, including phosphatidylcholines, cholesterol esters, sphingomyelins, and indole metabolites, mediated the association between plant protein intake and FI. The protective association between plant protein consumption and FI is mediated by lower abundance of lipid metabolites and higher abundance of tryptophan-related metabolites.


Subject(s)
Frailty , Humans , Aged , Longitudinal Studies , Plant Proteins , Cross-Sectional Studies , Dietary Proteins , Frail Elderly
16.
Aging Cell ; 22(11): e13978, 2023 11.
Article in English | MEDLINE | ID: mdl-37731195

ABSTRACT

While frailty is a prominent risk factor in an aging population, the underlying biology of frailty is incompletely described. Here, we integrate 979 circulating proteins across a wide range of physiologies with 12 measures of frailty in a prospective discovery cohort of 809 individuals with severe aortic stenosis (AS) undergoing transcatheter aortic valve implantation. Our aim was to characterize the proteomic architecture of frailty in a highly susceptible population and study its relation to clinical outcome and systems-wide phenotypes to define potential novel, clinically relevant frailty biology. Proteomic signatures (specifically of physical function) were related to post-intervention outcome in AS, specifying pathways of innate immunity, cell growth/senescence, fibrosis/metabolism, and a host of proteins not widely described in human aging. In published cohorts, the "frailty proteome" displayed heterogeneous trajectories across age (20-100 years, age only explaining a small fraction of variance) and were associated with cardiac and non-cardiac phenotypes and outcomes across two broad validation cohorts (N > 35,000) over ≈2-3 decades. These findings suggest the importance of precision biomarkers of underlying multi-organ health status in age-related morbidity and frailty.


Subject(s)
Aortic Valve Stenosis , Cardiovascular Diseases , Frailty , Transcatheter Aortic Valve Replacement , Humans , Aged , Young Adult , Adult , Middle Aged , Aged, 80 and over , Proteomics , Risk Factors , Aortic Valve
17.
Alzheimers Dement ; 19(10): 4436-4445, 2023 10.
Article in English | MEDLINE | ID: mdl-37530130

ABSTRACT

INTRODUCTION: Mitochondrial dysfunction is implicated in the pathophysiology of many chronic diseases. Whether it is related to cognitive impairment and pathological markers is unknown. METHODS: We examined the associations of in vivo skeletal muscle mitochondrial function (post-exercise recovery rate of phosphocreatine [kPCr] via magnetic resonance [MR] spectroscopy with future mild cognitive impairment (MCI) or dementia, and with positron emission tomography (PET) and blood biomarkers of Alzheimer's disease [AD] and neurodegeneration (i.e., Pittsburgh Compound-B [PiB] distribution volume ratio [DVR] for amyloid beta [Aß], flortaucipir (FTP) standardized uptake value ratio [SUVR] for tau, Aß42 /40 ratio, phosphorylated tau 181 [p-tau181], neurofilament light chain [NfL], and glial fibrillary acidic protein [GFAP]). RESULTS: After covariate adjustment, each standard deviation (SD) higher kPCr level was associated with 52% lower hazards of developing MCI/dementia, and with 59% lower odds of being PiB positive with specific associations in DVR of frontal, parietal, and temporal regions, and cingulate cortex and pallidum. Higher kPCr level was also associated with lower plasma GFAP. DISCUSSION: In aging, mitochondrial dysfunction may play a vital role in AD pathological changes and neuroinflammation. Highlights Higher in vivo mitochondrial function is related to lower risk of mild cognitive impairment (MCI)/dementia. Higher in vivo mitochondrial function is related to lower amyloid tracer uptake. Higher in vivo mitochondrial function is related to lower plasma neuroinflammation. Mitochondrial dysfunction may play a key role in Alzheimer's disease (AD) and neurodegeneration.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Neuroinflammatory Diseases , Cognitive Dysfunction/metabolism , tau Proteins/metabolism , Biomarkers , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Positron-Emission Tomography/methods
18.
Aging (Albany NY) ; 15(11): 4574-4575, 2023 06 12.
Article in English | MEDLINE | ID: mdl-37315298

Subject(s)
Aging , Mitochondria
19.
Neurobiol Aging ; 129: 178-184, 2023 09.
Article in English | MEDLINE | ID: mdl-37336172

ABSTRACT

Lipids are essential components of brain structure and shown to affect brain function. Previous studies have shown that aging men undergo greater brain atrophy than women, but whether the associations between lipids and brain atrophy differ by sex is unclear. We examined sex differences in the associations between circulating lipids by liquid chromatography-tandem mass spectrometry and the progression of MRI-derived brain atrophy index Spatial Patterns of Atrophy for Recognition of Brain Aging (SPARE-BA) over an average of 4.7 (SD = 2.3) years in 214 men and 261 women aged 60 or older who were initially cognitively normal using multivariable linear regression, adjusted for age, race, education, and baseline SPARE-BA. We found significant sex interactions for beta-oxidation rate, short-chain acylcarnitines, long-chain ceramides, and very long-chain triglycerides. Lower beta-oxidation rate and short-chain acylcarnitines in women and higher long-chain ceramides and very long-chain triglycerides in men were associated with faster increases in SPARE-BA (accelerated brain aging). Circulating lipid profiles of accelerated brain aging are sex-specific and vary by lipid classes and structure. Mechanisms underlying these sex-specific lipid profiles of brain aging warrant further investigation.


Subject(s)
Aging , Sex Characteristics , Humans , Female , Male , Brain/diagnostic imaging , Brain/pathology , Triglycerides , Ceramides , Atrophy/pathology
20.
Gerontology ; 69(10): 1167-1174, 2023.
Article in English | MEDLINE | ID: mdl-37166337

ABSTRACT

Measuring the abundance of biological molecules and their chemical modifications in blood and tissues has been the cornerstone of research and medical diagnoses for decades. Although the number and variety of molecules that can be measured have expanded exponentially, the blood biomarkers routinely assessed in medical practice remain limited to a few dozen, which have not substantially changed over the last 30-40 years. The discovery of novel biomarkers would allow, for example, risk stratification or monitoring of disease progression or the effectiveness of treatments and interventions, improving clinical practice in myriad ways. In this review, we combine the biomarker discovery concept with geroscience. Geroscience bridges aging research and translation to clinical applications by combining the framework of medical gerontology with high-technology medical research. With the development of geroscience and the rise of blood biomarkers, there has been a paradigm shift from disease prevention and cure to promoting health and healthy aging. New -omic technologies have played a role in the development of blood biomarkers, including epigenetic, proteomic, metabolomic, and lipidomic markers, which have emerged as correlates or predictors of health status, from disease to exceptional health.


Subject(s)
Healthy Aging , Proteomics , Humans , Biomarkers , Aging , Metabolomics
SELECTION OF CITATIONS
SEARCH DETAIL
...