Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 1755, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38409228

ABSTRACT

Nearly two hundred common-variant depression risk loci have been identified by genome-wide association studies (GWAS). However, the impact of rare coding variants on depression remains poorly understood. Here, we present whole-exome sequencing analyses of depression with seven different definitions based on survey, questionnaire, and electronic health records in 320,356 UK Biobank participants. We showed that the burden of rare damaging coding variants in loss-of-function intolerant genes is significantly associated with risk of depression with various definitions. We compared the rare and common genetic architecture across depression definitions by genetic correlation and showed different genetic relationships between definitions across common and rare variants. In addition, we demonstrated that the effects of rare damaging coding variant burden and polygenic risk score on depression risk are additive. The gene set burden analyses revealed overlapping rare genetic variant components with developmental disorder, autism, and schizophrenia. Our study provides insights into the contribution of rare coding variants, separately and in conjunction with common variants, on depression with various definitions and their genetic relationships with neurodevelopmental disorders.


Subject(s)
Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Exome Sequencing , Biological Specimen Banks , Depression/genetics , UK Biobank
2.
Nat Genet ; 55(6): 927-938, 2023 06.
Article in English | MEDLINE | ID: mdl-37231097

ABSTRACT

Compelling evidence suggests that human cognitive function is strongly influenced by genetics. Here, we conduct a large-scale exome study to examine whether rare protein-coding variants impact cognitive function in the adult population (n = 485,930). We identify eight genes (ADGRB2, KDM5B, GIGYF1, ANKRD12, SLC8A1, RC3H2, CACNA1A and BCAS3) that are associated with adult cognitive function through rare coding variants with large effects. Rare genetic architecture for cognitive function partially overlaps with that of neurodevelopmental disorders. In the case of KDM5B we show how the genetic dosage of one of these genes may determine the variability of cognitive, behavioral and molecular traits in mice and humans. We further provide evidence that rare and common variants overlap in association signals and contribute additively to cognitive function. Our study introduces the relevance of rare coding variants for cognitive function and unveils high-impact monogenic contributions to how cognitive function is distributed in the normal adult population.


Subject(s)
Genetic Variation , Neurodevelopmental Disorders , Humans , Adult , Animals , Mice , Genetic Predisposition to Disease , Phenotype , Cognition , Carrier Proteins/genetics , Nuclear Proteins/genetics
3.
Nat Commun ; 13(1): 6868, 2022 11 11.
Article in English | MEDLINE | ID: mdl-36369282

ABSTRACT

Cognitive deficits are known to be related to most forms of psychopathology. Here, we perform local genetic correlation analysis as a means of identifying independent segments of the genome that show biologically interpretable pleiotropic associations between cognitive dimensions and psychopathology. We identify collective segments of the genome, which we call "meta-loci", showing differential pleiotropic patterns for psychopathology relative to either cognitive task performance (CTP) or performance on a non-cognitive factor (NCF) derived from educational attainment. We observe that neurodevelopmental gene sets expressed during the prenatal-early childhood period predominate in CTP-relevant meta-loci, while post-natal gene sets are more involved in NCF-relevant meta-loci. Further, we demonstrate that neurodevelopmental gene sets are dissociable across CTP meta-loci with respect to their spatial distribution across the brain. Additionally, we find that GABA-ergic, cholinergic, and glutamatergic genes drive pleiotropic relationships within dissociable meta-loci.


Subject(s)
Cognition Disorders , Genome-Wide Association Study , Child, Preschool , Humans , Genome-Wide Association Study/methods , Genomics , Psychopathology
4.
Nanotechnology ; 32(23)2021 Mar 16.
Article in English | MEDLINE | ID: mdl-33647897

ABSTRACT

Particulate matters (PMs) air pollution is identified as the major threat to public health and climate. High-performance air filter technology based on various electrospun nanofibers is considered as an effective strategy to eliminate the effects of PMs air pollution. However, to date, nearly all the existing micro-/nanofibers are hard to meet both requirements of high PMs removal efficiency and long service life. In this work, we reported the production of laminated polyacrylonitrile(PAN)-boehmite nanoparticles (BNPs) nanofiber structured membrane by the electrospinning process. The dimension of PAN-BNPs nanofiber can be tunable from (0.09 ± 0.03)µm to (0.81 ± 0.11)µm by controlling the PAN and BNPs concentrations in precursors. The optimized PAN-BNPs nanofiber air filter with a basis weight of 1 g m-2demonstrates the attractive attributes of high PM2.5removal efficiency up to 99.962% and low pressure drop of 58 Pa. Most importantly, after introducing the BNPs as electret, the removal efficiency is very stable under the air flow rate of 6 l min-1. This PAN-BNPs nanofiber with a long electrostatic duration time offers an approach for fabricating future high-performance air filters.

5.
Biol Methods Protoc ; 5(1): bpaa008, 2020.
Article in English | MEDLINE | ID: mdl-32665975

ABSTRACT

The majority of genome-wide association study (GWAS)-identified SNPs are located in noncoding regions of genes and are likely to influence disease risk and phenotypes by affecting gene expression. Since credible intervals responsible for genome-wide associations typically consist of ≥100 variants with similar statistical support, experimental methods are needed to fine map causal variants. We report here a moderate-throughput approach to identifying regulatory GWAS variants, expression CROP-seq, which consists of multiplex CRISPR-Cas9 genome editing combined with single-cell RNAseq to measure perturbation in transcript abundance. Mutations were induced in the HL60/S4 myeloid cell line nearby 57 SNPs in three genes, two of which, rs2251039 and rs35675666, significantly altered CISD1 and PARK7 expression, respectively, with strong replication and validation in single-cell clones. The sites overlap with chromatin accessibility peaks and define causal variants for inflammatory bowel disease at the two loci. This relatively inexpensive approach should be scalable for broad surveys and is also implementable for the fine mapping of individual genes.

6.
Genes (Basel) ; 11(5)2020 05 04.
Article in English | MEDLINE | ID: mdl-32375333

ABSTRACT

The majority of genetic variants affecting complex traits map to regulatory regions of genes, and typically lie in credible intervals of 100 or more SNPs. Fine mapping of the causal variant(s) at a locus depends on assays that are able to discriminate the effects of polymorphisms or mutations on gene expression. Here, we evaluated a moderate-throughput CRISPR-Cas9 mutagenesis approach, based on replicated measurement of transcript abundance in single-cell clones, by deleting candidate regulatory SNPs, affecting four genes known to be affected by large-effect expression Quantitative Trait Loci (eQTL) in leukocytes, and using Fluidigm qRT-PCR to monitor gene expression in HL60 pro-myeloid human cells. We concluded that there were multiple constraints that rendered the approach generally infeasible for fine mapping. These included the non-targetability of many regulatory SNPs, clonal variability of single-cell derivatives, and expense. Power calculations based on the measured variance attributable to major sources of experimental error indicated that typical eQTL explaining 10% of the variation in expression of a gene would usually require at least eight biological replicates of each clone. Scanning across credible intervals with this approach is not recommended.


Subject(s)
CRISPR-Cas Systems , Chromosome Mapping/methods , Genome-Wide Association Study/methods , Multifactorial Inheritance/genetics , Mutagenesis , Polymorphism, Single Nucleotide , Quantitative Trait Loci/genetics , Scientific Experimental Error , Single-Cell Analysis/methods , Causality , Cell Lineage , Clone Cells , Gene Deletion , HL-60 Cells , Humans , Leukopoiesis/genetics , Neutrophils/cytology , Quantitative Trait, Heritable , RNA-Seq , Reproducibility of Results , Sequence Deletion
7.
Biochem Biophys Res Commun ; 500(3): 777-782, 2018 06 07.
Article in English | MEDLINE | ID: mdl-29679567

ABSTRACT

Krüppel-like factor 5 (KLF5) is a basic transcription factor that regulates diverse cellular processes during tumor development. Acetylation of KLF5 at lysine 369 (K369) reverses its function from promoting to suppressing cell proliferation and tumor growth. In this study, we examined the regulation of KLF5 by histone deacetylases in the prostate cancer cell line DU 145. While confirming the functions of HDAC1/2 in KLF5 deacetylation and the promotion of cell proliferation, we found that the knockdown of HDAC1/2 upregulated KLF5 protein but not KLF5 mRNA, and the increase in KLF5 protein level by silencing HDAC1/2 was at least in part due to decreased proteasomal degradation. Deacetylase activity was required for HDAC1/2-mediated KLF5 degradation, and mutation of KLF5 to an acetylation-mimicking form prevented its degradation, even though the mutation did not affect the binding of KLF5 with HDAC1/2. Mutation of K369 to arginine, which prevents acetylation, did not affect the binding of KLF5 to HDAC1 or the response of KLF5 to HDAC1/2-promoted degradation. These findings provide a novel mechanistic association between the acetylation status of KLF5 and its protein stability. They also suggest that maintaining KLF5 in a deacetylated form may be an important mechanism by which KLF5 and HDACs promote cell proliferation and tumor growth.


Subject(s)
Histone Deacetylase 1/metabolism , Histone Deacetylase 2/metabolism , Kruppel-Like Transcription Factors/metabolism , Proteasome Endopeptidase Complex/metabolism , Proteolysis , Acetylation , Cell Line, Tumor , Cell Proliferation/genetics , Down-Regulation/genetics , Gene Silencing , Humans , Kruppel-Like Transcription Factors/genetics , Lysine/metabolism , Protein Binding , Protein Stability , RNA, Messenger/genetics , RNA, Messenger/metabolism
8.
Tumour Biol ; 36(6): 4763-71, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25663458

ABSTRACT

Common genetic variants (single nucleotide polymorphisms SNPs) in microRNA (miRNA) genes may alter their maturation or expression and play a role in the formation of human cancer. Recently, the association between the SNP rs6505162 in pre-miR-423 and cancer risk has been frequently evaluated in diverse populations and in a range of cancers. In this study, we determined the genotypes of SNP rs6505162 in 5 matched cell lines (breast cancer cell lines and their corresponding peripheral blood cell lines) and 114 matched clinical specimens (clinical breast carcinoma specimens and their corresponding normal tissues), compared the processing efficiency of pri-miRNA to mature forms between pre-miR-423-12C (wild-type) and pre-miR-423-12A (mutant-type) expression vectors, and evaluated the function of miR-423 on cell proliferation. Our data showed that two out of five breast cancer cell lines and 8.77 % (10/114) of tumors underwent somatic mutations of the rs6505162 SNP, and somatic mutation state was significantly correlated with the expression of clinicopathologic variables, proliferating cell nuclear antigen (PCNA) and mutant p53. The pre-miR-423-12C SNP blocked the endogenous processing of pri-miR-423 to its two mature miRNAs. Interestingly, selected pre-miR-423-12C stable cell population had lower proliferation ability than pre-miR-423-12A stable cell population. Moreover, miR-423 promoted cell proliferation in breast cancer cell lines through its miR-423-3p strand, not miR-423-5p. Taken together, these results suggest that the SNP rs6505162 in pre-miR-423 affects the mature miR expression, and miR-423 plays a potentially oncogenic role in breast tumorigenesis.


Subject(s)
Breast Neoplasms/genetics , Cell Proliferation/genetics , MicroRNAs/genetics , Breast Neoplasms/pathology , DNA Mutational Analysis , Female , Gene Expression Regulation, Neoplastic , Humans , MCF-7 Cells , MicroRNAs/biosynthesis , Mutation , Polymorphism, Single Nucleotide , Proliferating Cell Nuclear Antigen/genetics , Tumor Suppressor Protein p53/genetics
SELECTION OF CITATIONS
SEARCH DETAIL