Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Plant Biotechnol (Tokyo) ; 37(1): 1-8, 2020 Mar 25.
Article in English | MEDLINE | ID: mdl-32362742

ABSTRACT

Anther indehiscence is an important form of functional male sterility that can facilitate the production of hybrid seed; however, the molecular mechanisms of anther indehiscence-based male sterility have not been thoroughly explored in eggplant (Solanum melongena L.). Here, we used two-dimensional gel electrophoresis to compare the protein profiles in the anthers of normally developing (F142) and anther indehiscent (S16) S. melongena plants. Four differentially expressed proteins were identified using matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry. Of these proteins, the transcript accumulation of the eggplant CORONATINE INSENSITIVE1 (SmCOI1) was significantly downregulated in S16 relative to F142. Phylogenetic analysis showed that SmCOI1 has high amino acid sequence similarity and clustered into the same subgroup as its homologs in other members of the Solanaceae. Subcellular localization analysis showed that SmCOI1 localized to the nucleus. Moreover, reverse-transcription quantitative PCR revealed that the jasmonic acid pathway genes SmJAZ1 and SmOPR3 are upregulated in F142 relative to S16. Protein-protein interaction studies identified a direct interaction between SmCOI1 and SmOPR3, but SmCOI1 failed to interact with SmJAZ1. These findings shed light on the regulatory mechanisms of anther dehiscence in eggplant.

3.
Nat Commun ; 11(1): 2453, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32415180

ABSTRACT

Two-dimensional materials provide extraordinary opportunities for exploring phenomena arising in atomically thin crystals. Beginning with the first isolation of graphene, mechanical exfoliation has been a key to provide high-quality two-dimensional materials, but despite improvements it is still limited in yield, lateral size and contamination. Here we introduce a contamination-free, one-step and universal Au-assisted mechanical exfoliation method and demonstrate its effectiveness by isolating 40 types of single-crystalline monolayers, including elemental two-dimensional crystals, metal-dichalcogenides, magnets and superconductors. Most of them are of millimeter-size and high-quality, as shown by transfer-free measurements of electron microscopy, photo spectroscopies and electrical transport. Large suspended two-dimensional crystals and heterojunctions were also prepared with high-yield. Enhanced adhesion between the crystals and the substrates enables such efficient exfoliation, for which we identify a gold-assisted exfoliation method that underpins a universal route for producing large-area monolayers and thus supports studies of fundamental properties and potential application of two-dimensional materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...