Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
World J Diabetes ; 15(6): 1111-1121, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38983817

ABSTRACT

Diabetic kidney disease is one of the most severe chronic microvascular complications of diabetes and a primary cause of end-stage renal disease. Clinical studies have shown that renal inflammation is a key factor determining kidney damage during diabetes. With the development of immunological technology, many studies have shown that diabetic nephropathy is an immune complex disease, and that most patients have immune dysfunction. However, the immune response associated with diabetic nephropathy and autoimmune kidney disease, or caused by ischemia or infection with acute renal injury, is different, and has a com-plicated pathological mechanism. In this review, we discuss the pathogenesis of diabetic nephropathy in immune disorders and the intervention mechanism, to provide guidance and advice for early intervention and treatment of diabetic nephropathy.

2.
Fish Shellfish Immunol ; 150: 109649, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38797336

ABSTRACT

In mammals, CD4 is found to be expressed on T cells and innate immune cells, however, teleost cells bearing CD4 have not been well identified and characterized. In this study, we identified two different CD4-1+ cell subsets in grass carp (Ctenopharyngodon idella): CD4-1+ lymphocytes (Lym) and CD4-1+ myeloid cells (Mye), both of which had the highest proportions in the head kidney. The mRNA expression analysis showed that CD4-1, CD4-2, TCRß, CD3γ/δ, and LCK1 are highly expressed in CD4-1+ Lym and also expressed in CD4-1+ Mye. Furthermore, we found that CD4-1+ Lym have a Lym morphology and highly express T-cell cytokines, suggesting that they are CD4+ T cells equivalent to mammalian Th cells. On the other hand, CD4-1+ Mye were found to have a morphology of macrophage and highly express macrophage marker gene MCSFR, indicating that they are macrophages. In addition, functional analysis revealed that CD4-1+ Mye possess phagocytic ability and great antigen-processing ability. Taken together, our study sheds further light on the composition and function of CD4+ cells in teleost fish.


Subject(s)
Carps , Fish Proteins , Animals , Carps/immunology , Carps/genetics , Fish Proteins/genetics , Fish Proteins/immunology , CD4-Positive T-Lymphocytes/immunology , CD4 Antigens/genetics , CD4 Antigens/immunology , CD4 Antigens/metabolism , Head Kidney/immunology , Head Kidney/cytology , Myeloid Cells/immunology , Immunity, Innate/genetics
3.
Fish Shellfish Immunol ; 136: 108705, 2023 May.
Article in English | MEDLINE | ID: mdl-36958505

ABSTRACT

Immunoglobulins (Igs) are important effector molecules that mediate humoral immunity. A typical Ig consists of two heavy and two light chains. In teleosts, three Ig heavy chain isotypes (Igµ, Igδ and Igτ) and three Ig light chain isotypes (Igκ, Igλ and Igσ) have been identified. Compared to the heavy chains, teleost Ig light chains have been poorly studied due to the lack of antibodies. In this study, a mouse anti-Nile tilapia Igλ monoclonal antibody (mAb) was prepared, which could specifically recognize Igλ in serum and Igλ+ B cells in tissues. Further, the composition of IgM+ and Igλ+ B cell subsets was analyzed using this antibody and a mouse anti-tilapia IgM heavy chain mAb. The ratio of IgM+Igλ+ B cells to total IgM+ B cells in head kidney and peripheral blood was about 30%, while that in spleen was about 50%; the ratio of IgM-Igλ+ B cells to total Igλ+ B cells in head kidney and peripheral blood was about 45%, while that in spleen was about 25%. The IgM-Igλ+ B cells was speculated to be IgT+ B cells. Finally, we detected an increase in the level of specific antibodies against the surface antigen-Sip of Streptococcus agalactiae in serum after S. agalactiae infection, indicating that mouse anti-tilapia Igλ mAb can be used to detect the antibody level after immunization of Nile tilapia, which lays a foundation for the evaluation of immunization effect of tilapia vaccine.


Subject(s)
B-Lymphocyte Subsets , Cichlids , Fish Diseases , Streptococcal Infections , Tilapia , Mice , Animals , Antibodies, Monoclonal , Immunity, Humoral , Immunosuppressive Agents , Streptococcus agalactiae , Immunoglobulin M
4.
Shanghai Kou Qiang Yi Xue ; 31(1): 100-103, 2022 Feb.
Article in Chinese | MEDLINE | ID: mdl-35587679

ABSTRACT

PURPOSE: To investigate the distribution of Porphyromonas gingivalis(P.g) rag genotypes in patients of chronic periodontitis with chronic obstructive pulmonary disease (COPD). METHODS: Thirty patients with chronic periodontitis and 30 patients with chronic periodontitis complicated with COPD were included. Saliva samples were collected from all subjects. The detection rate and rag genotype of P.g in saliva were detected by 16S rDNA polymerase chain reaction (PCR). SPSS 22.0 software package was used for statistical analysis. RESULTS: The positive rate of P.g was 76.67% in chronic periodontitis patients with COPD, and 63.33% in chronic periodontitis group, there was no significant difference between the two groups (P>0.05). The detection rates of rag-1 genotype in the two groups were 70% and 30.77%, respectively, there was significant difference between the two groups(P<0.05). The detection rates of rag-2, rag-3 and rag-4 in the two groups were not significantly different. CONCLUSIONS: Various rag genotypes can be found in patients of chronic periodontitis with COPD. Rag-1 might have more close correlation with the development of COPD.


Subject(s)
Chronic Periodontitis , Pulmonary Disease, Chronic Obstructive , Genotype , Humans , Polymerase Chain Reaction , Porphyromonas gingivalis/genetics , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/genetics
5.
Food Chem X ; 14: 100276, 2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35284819

ABSTRACT

The characterisation and distribution patterns of key odour-active compounds in head, heart1, heart2, tail, and stillage cuts of freshly distilled brandy were investigated by gas chromatography-olfactometry-mass spectrometry coupled with aroma extract dilution analysis (AEDA) and chemometrics analysis. Results from AEDA showed that there were 50, 61, 48, 25, and 18 odour-active compounds in the head, heart1, heart2, tail, and stillage cuts, respectively. Besides, 19, 22, 11, 5, and 4 quantified compounds with odour activity values ≥ 1, respectively, were considered to be potential contributors to the aroma profile of different distillation cuts. Especially, the chemometrics analysis illustrated the heart1 fraction was characterized by 3-methylbutanol, ethyl hexanoate, 1-hexanol, ethyl octanoate, benzaldehyde, ethyl decanoate, and 2-phenylethyl acetate; (E)-hex-3-en-1-ol, (Z)-hex-3-en-1-ol, and 2-phenylethyl acetate greatly contributed to the characteristics of the heart2 cut. Furthermore, different volatile compounds with a variety of boiling points and solubilities followed diverse distillation rules during the second distillation. Our findings may provide a rational basis for concentrating more pleasant aroma components contributing to brandy.

6.
Pharmacol Res ; 173: 105888, 2021 11.
Article in English | MEDLINE | ID: mdl-34536546

ABSTRACT

Nuclear receptor binding SET Domain Protein 1 (NSD1) is a bifunctional transcriptional regulatory protein that encodes histone methyltransferase. Mono- and di-methylation of H3K36 by NSD1 is mainly primarily involved in the regulation of gene expression, DNA repair, alternative splicing, and other important biological processes. Many types of cancers, including acute myelogenous leukemia (AML), liver cancer, lung cancer, endometrial carcinoma, colorectal cancer, and pancreatic cancer, are associated with NSD1 fusion, missense mutation, nonsense mutation, silent mutation, deletion, and insertion of frameshift, and deletion in a frame. Therefore, targeting NSD1 may be a potential strategy for tumor therapy. An in-depth study of the structure and biological activities of NSD1 sets the groundwork for improving tumor therapy and creating NSD1 inhibitors. This article emphasizes the role of NSD1 in tumorigenesis and the development of NSD1 targeted small-molecule inhibitors.


Subject(s)
Histone-Lysine N-Methyltransferase/metabolism , Neoplasms/metabolism , Animals , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Histone-Lysine N-Methyltransferase/chemistry , Histone-Lysine N-Methyltransferase/genetics , Humans , Neoplasms/drug therapy , Neoplasms/genetics
7.
Anaerobe ; 67: 102295, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33246096

ABSTRACT

OBJECTIVE: Clostridioides difficile may colonize healthy infants and young children asymptomatically and for the long-term. C. difficile genotypes and the rate and determinants of colonization differ substantially and vary among countries and regions. A 1-year follow-up study was performed to determine the incidence, kinetics and influencing factors of C. difficile intestinal colonization. METHODS: Twenty-nine healthy infants (14 girls and 15 boys) living at home with their parents in Handan City were followed by survey from birth to 1 year of age, specifically from October 2014 through December 2015. C. difficile isolates were typed by PCR ribotyping and analyzed for the presence of toxin genes. RESULTS: During the follow-up study period in the first year of life, 20 of the 29 total enrolled infants acquired C. difficile. A total of 437 fecal samples were obtained, and 111 (25.4%) samples contained C. difficile, including 79 (71.2%) toxigenic strains. The toxigenic isolates comprised six PCR ribotypes, and two PCR ribotypes were identified as nontoxigenic strains. CONCLUSION: Our study showed that C. difficile colonization increase with age during the 12-month period, and the dominant toxigenic types of C. difficile isolates in infants were those involved in long-term colonization. Feeding patterns may affect the dynamic progress of C. difficile colonization.


Subject(s)
Carrier State/epidemiology , Clostridioides difficile/classification , Clostridioides difficile/genetics , Clostridium Infections/epidemiology , Biodiversity , China/epidemiology , Clostridioides difficile/isolation & purification , DNA, Bacterial , Feces/microbiology , Feeding Behavior , Female , Follow-Up Studies , Genotype , Humans , Incidence , Infant , Infant, Newborn , Intestines/microbiology , Male , Polymerase Chain Reaction , RNA, Ribosomal, 16S , Ribotyping
8.
Environ Pollut ; 267: 115540, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32898731

ABSTRACT

The use of the phenicol antibiotic florfenicol in livestock can select for the optrA gene, which also confers resistance to the critically important oxazolidinone antibiotic linezolid. However, the occurrence and dissemination of florfenicol and linezolid cross-resistance genes in anaerobic treatment systems for livestock waste are unknown. Herein, the phenotypes and genotypes (optrA, fexA, fexB, and cfr) of florfenicol and linezolid cross-resistance were investigated in 339 enterococci strains isolated from lab- and full-scale mesophilic anaerobic digestion systems treating swine waste. It was found that optrA, fexA, and fexB were frequently detected in isolated enterococci in both systems by PCR screening, whereas cfr was not detected. The most abundant gene was optrA, which was detected in 73.5% (n = 50) and 38.9% (n = 23) of enterococci isolates in the full-scale influent and effluent, respectively. Most strains carried more than two resistance genes, and the average percentage of co-occurrence of optrA/fexA was 16.6%. Based on minimum inhibitory concentrations of the enterococci strain phenotypes, 85.7%, 77.5%, and 77.5% of strains in influent were resistant to chloramphenicol, florfenicol, and linezolid, respectively, while 56.3%, 65.2%, and 13% in the effluent isolates were found, respectively, which was consistent with the genotype results. The phenotypes and genotypes of florfenicol and linezolid resistance were relative stable in the enterococci isolated from the influent and effluent in lab-scale anaerobic digestion system. The findings signify the enterococci isolates harboring the optrA gene remained in effluents of both full- and lab-scale swine waste anaerobic digestion system; hence, effective management strategies should be implemented to prevent the discharge of antibiotic resistance from the livestock waste treatment systems.


Subject(s)
Enterococcus , Oxazolidinones , Anaerobiosis , Animals , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Enterococcus/genetics , Enterococcus faecalis , Genes, Bacterial , Manure , Prevalence , Swine
9.
PLoS One ; 11(3): e0151964, 2016.
Article in English | MEDLINE | ID: mdl-27011211

ABSTRACT

Clostridium difficile is a spore-forming, gram-positive, anaerobic bacillus that can cause C. difficile infection (CDI). However, only a few studies on the prevalence and antibiotic resistance of C. difficile in healthy individuals in China have been reported. We employed a spore enrichment culture to screen for C. difficile in the stool samples of 3699 healthy Chinese individuals who were divided into 4 groups: infants younger than 2 years of age and living at home with their parents; children aged 1 to 8 years of age and attending three different kindergarten schools; community-dwelling healthy adult aged 23-60 years old; and healthcare workers aged 28-80 years old. The C. difficile isolates were analyzed for the presence of toxin genes and typed by PCR ribotyping and multilocus sequence typing (MLST). The minimum inhibitory concentration of 8 antimicrobial agents was determined for all of the isolates using the agar dilution method. The intestinal carriage rate in the healthy children was 13.6% and ranged from 0% to 21% depending on age. The carriage rates in the 1654 community-dwelling healthy adults and 348 healthcare workers were 5.5% and 6.3%, respectively. Among the isolates, 226 were toxigenic (225 tcdA+/tcdB+ and 1 tcdA+/tcdB+ ctdA+/ctdB+). Twenty-four ribotypes were found, with the dominant type accounting for 29.7% of the isolates. The toxigenic isolates were typed into 27 MLST genotypes. All of the strains were susceptible to vancomycin, metronidazole, fidaxomicin, and rifaximin. High resistance to levofloxacin and ciprofloxacin at rates of 39.8% and 98.3%, respectively, were observed. ST37 isolates were more resistant to levofloxacin than the other STs. The PCR ribotypes and sequence types from the healthy populations were similar to those from the adult patients.


Subject(s)
Anti-Bacterial Agents/pharmacology , Clostridioides difficile/drug effects , Clostridioides difficile/isolation & purification , Drug Resistance, Bacterial , Enterocolitis, Pseudomembranous/drug therapy , Enterocolitis, Pseudomembranous/microbiology , Intestines/microbiology , Adult , Aged , Aged, 80 and over , Anti-Bacterial Agents/therapeutic use , Child , Child, Preschool , China/epidemiology , Clostridioides difficile/genetics , Enterocolitis, Pseudomembranous/epidemiology , Female , Humans , Infant , Male , Microbial Sensitivity Tests , Middle Aged , Multilocus Sequence Typing , Prevalence , Ribotyping , Young Adult
10.
Oncotarget ; 7(4): 4817-28, 2016 Jan 26.
Article in English | MEDLINE | ID: mdl-26716895

ABSTRACT

OBJECTIVE: miR-215 was reported to be downregulated and functioned as a tumor suppressor in several cancers. In contrast, miR-215 was preferentially upregulated in gastric cancer (GC) according to our data. Thus, we studied the potential biological function of miR-215 in GC. METHODS: miR-215 expression was measured in 77 paired GC tissues and adjacent non-tumor tissues. Biological functions of miR-215 were analyzed using cell viability, colony formation, migration, invasion, cell cycle, apoptosis and luciferase assays as well as via tumorigenicity and metastasis analysis. RESULTS: miR-215 was significantly upregulated in 7 GC cell lines and 77 GC tissues compared to adjacent non-tumor tissues (P < 0.05), and miR-215 expression was greater in advanced GC (stage III/IV; P < 0.05). Ectopic expression of miR-215 in GES-1 and HGC-27 cells (low miR-215 expression) promoted cell growth, migration, invasion, and metastasis, and these were reversed in NCI-N87 cells (high miR-215 expression) after miR-215 downregulation. Potential target genes of miR-215 were predicted and RUNX1, a transcription factor and a tumor suppressor, was confirmed to be potential target according to luciferase studies. RUNX1 was downregulated in GC tissues compared to adjacent non-tumor tissues (P < 0.05), and RUNX1 reversed partial function of miR-215 in vitro. CONCLUSIONS: miR-215 promotes malignant progression of GC by targeting RUNX1, and RUNX1 can partially reverse miR-215 effects.


Subject(s)
Adenocarcinoma/pathology , Biomarkers, Tumor/metabolism , Core Binding Factor Alpha 2 Subunit/metabolism , Liver Neoplasms/secondary , MicroRNAs/genetics , Stomach Neoplasms/pathology , Adenocarcinoma/genetics , Adenocarcinoma/metabolism , Adult , Aged , Aged, 80 and over , Animals , Apoptosis , Biomarkers, Tumor/genetics , Blotting, Western , Cell Cycle , Cell Movement , Cell Proliferation , Core Binding Factor Alpha 2 Subunit/genetics , Disease Progression , Female , Follow-Up Studies , Gene Expression Regulation, Neoplastic , Humans , Immunoenzyme Techniques , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Middle Aged , Neoplasm Invasiveness , Neoplasm Staging , Prognosis , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Survival Rate , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL