Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmacol Res ; 199: 107034, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38070793

ABSTRACT

The incidence and mortality of lung cancer are on the rise worldwide. However, the benefit of clinical treatment in lung cancer is limited. Owning to important sources of drug development, natural products have received constant attention around the world. Main ingredient polysaccharides in natural products have been found to have various activities in pharmacological research. In recent years, more and more scientists are looking for the effects and mechanisms of different natural product polysaccharides on lung cancer. In this review, we focus on the following aspects: First, natural product polysaccharides have been discovered to directly suppress the growth of lung cancer cells, which can be effective in limiting tumor progression. Additionally, polysaccharides have been considered to enhance immune function, which can play a pivotal role in fighting lung cancer. Lastly, polysaccharides can improve the efficacy of drugs in lung cancer treatment by regulating the gut microbiota. Overall, the research of natural product polysaccharides in the treatment of lung cancer is a promising area that has the potential to lead to new clinical treatments. With better understanding, natural product polysaccharides have the potential to become important components of future lung cancer treatments.


Subject(s)
Biological Products , Gastrointestinal Microbiome , Lung Neoplasms , Humans , Lung Neoplasms/drug therapy , Biological Products/pharmacology , Biological Products/therapeutic use , Polysaccharides/pharmacology , Polysaccharides/therapeutic use
2.
Comput Biol Med ; 151(Pt A): 106293, 2022 12.
Article in English | MEDLINE | ID: mdl-36399857

ABSTRACT

BACKGROUND: Mahuang FuziXixin Decoction (MFXD) is a classic Chinese herbal formula for the treatment of lung cancer. However, its mechanisms of action are unclear. In present study, network pharmacology and molecular docking technology were employed to investigate the molecular mechanism and substance basis of MFXD for the treatment of lung cancer. METHOD: The active compounds and corresponding targets of MFXD were collected through the TCMSP database. OMIM and GeneCards databases were applied to filter the targets of lung cancer. The protein-protein interaction (PPI) were acquired through the STRING platform. Metascape and the Bioinformatics server were used for the visualization of GO and KEGG analysis. The tissue and organ distribution of targets was evaluated based on the BioGPS database. The binding affinity between potential targets and active compounds was evaluated by molecular docking. RESULT: A total of 51 active compounds and 118 targets of MFXD were collected. The target with a higher degree were identified through the PPI network, namely AR, RELA, NCOA1, EGFR, FOS, CCND1, ESR1 and HSP90AA1. GO and KEGG analysis suggested that MFXD treatment of lung cancer mainly involves hormone and response to inorganic substance, transcription regular complex, transcription factor binding and Pathways in cancer. Experimental validation showed that MFXD treatment inhibited the proliferation of NSCLC cells through downregulation the expression of EGFR, HIF1A, NCOA1 and RELA. Moreover, molecular docking revealed that hydrogen bond and hydrophobic interaction contribute to the binding of the compounds to targets. CONCLUSION: Our findings comprehensively elucidated the actives, potential targets, and molecular mechanisms of MFXD against lung cancer, providing a promising strategy for the scientific basis and therapeutic mechanism of traditional Chinese medicine prescriptions for the treatment of the disease.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Molecular Docking Simulation , Network Pharmacology , Lung Neoplasms/drug therapy , Carcinoma, Non-Small-Cell Lung/drug therapy , ErbB Receptors
3.
Front Pharmacol ; 13: 982424, 2022.
Article in English | MEDLINE | ID: mdl-36091829

ABSTRACT

Isocitrate dehydrogenase (IDH) is the key metabolic enzyme that catalyzes the conversion of isocitrate to α-ketoglutarate (α-KG). Two main types of IDH1 and IDH2 are present in humans. In recent years, mutations in IDH have been observed in several tumors, including glioma, acute myeloid leukemia, and chondrosarcoma. Among them, the frequency of IDH1 mutations is higher than IDH2. IDH1 mutations have been shown to increase the conversion of α-KG to 2-hydroxyglutarate (2-HG). IDH1 mutation-mediated accumulation of 2-HG leads to epigenetic dysregulation, altering gene expression, and impairing cell differentiation. A rapidly emerging therapeutic approach is through the development of small molecule inhibitors targeting mutant IDH1 (mIDH1), as evidenced by the recently approved of the first selective IDH1 mutant inhibitor AG-120 (ivosidenib) for the treatment of IDH1-mutated AML. This review will focus on mIDH1 as a therapeutic target and provide an update on IDH1 mutant inhibitors in development and clinical trials.

SELECTION OF CITATIONS
SEARCH DETAIL
...