Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 342
Filter
1.
Microbiol Spectr ; : e0420223, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874428

ABSTRACT

The underlying mechanism of thermotolerance, which is a key virulence factor essential for pathogenic fungi such as Cryptococcus neoformans, is largely unexplored. In this study, our findings suggest that Set302, a homolog of Set3 and a subunit of histone deacetylase complex Set3C, contributes to thermotolerance in C. neoformans. Specifically, the deletion of the predicted Set3C core subunit, Set302, resulted in further reduction in the growth of C. neoformans at 39°C, and survival of transient incubation at 50°C. Transcriptomics analysis revealed that the expression levels of numerous heat stress-responsive genes altered at both 30°C and 39°C due to the lack of Set302. Notably, at 39°C, the absence of Set302 led to the downregulation of gene expression related to the ubiquitin-proteasome system (UPS). Based on the GFP-α-synuclein overexpression model to characterize misfolded proteins, we observed a pronounced accumulation of misfolded GFP-α-synuclein at 39°C, consequently inhibiting C. neoformans thermotolerance. Furthermore, the loss of Set302 exacerbated the accumulation of misfolded GFP-α-synuclein during heat stress. Interestingly, the set302∆ strain exhibited a similar phenotype under proteasome stress as it did at 39°C. Moreover, the absence of Set302 led to reduced production of capsule and melanin. set302∆ strain also displayed significantly reduced pathogenicity and colonization ability compared to the wild-type strain in the murine infection model. Collectively, our findings suggest that Set302 modulates thermotolerance by affecting the degradation of misfolded proteins and multiple virulence factors to mediate the pathogenicity of C. neoformans.IMPORTANCECryptococcus neoformans is a pathogenic fungus that poses a potential and significant threat to public health. Thermotolerance plays a crucial role in the wide distribution in natural environments and host colonization of this fungus. Herein, Set302, a critical core subunit for the integrity of histone deacetylase complex Set3C and widely distributed in various fungi and mammals, governs thermotolerance and affects survival at extreme temperatures as well as the formation of capsule and melanin in C. neoformans. Additionally, Set302 participates in regulating the expression of multiple genes associated with the ubiquitin-proteasome system (UPS). By eliminating misfolded proteins under heat stress, Set302 significantly contributes to the thermotolerance of C. neoformans. Moreover, Set302 regulates the pathogenicity and colonization ability of C. neoformans in a murine model. Overall, this study provides new insight into the mechanism of thermotolerance in C. neoformans.

2.
Insect Sci ; 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38881212

ABSTRACT

The Asian citrus psyllid, Diaphorina citri, is the primary vector of the HLB pathogen, Candidatus Liberibacter asiaticus (CLas). The acquisition of CLas shortens the developmental period of nymphs, accelerating the emergence into adulthood and thereby facilitating the spread of CLas. Cuticular proteins (CPs) are involved in insect emergence. In this study, we investigated the molecular mechanisms underlying CLas-promoted emergence in D. citri via CP mediation. Here, a total of 159 CP genes were first identified in the D. citri genome. Chromosomal location analysis revealed an uneven distribution of these CP genes across the 13 D. citri chromosomes. Proteomic analysis identified 54 differentially expressed CPs during D. citri emergence, with 14 CPs exhibiting significant differential expression after CLas acquisition. Five key genes, Dc18aa-1, Dc18aa-2, DcCPR-24, DcCPR-38 and DcCPR-58, were screened from the proteome and CLas acquisition. The silencing of these 5 genes through a modified feeding method significantly reduced the emergence rate and caused various abnormal phenotypes, indicating the crucial role that these genes play in D. citri emergence. This study provides a comprehensive overview of the role of CPs in D. citri and reveals that CLas can influence the emergence process of D. citri by regulating the expression of CPs. These key CPs may serve as potential targets for future research on controlling huanglongbing (HLB) transmission.

3.
Fitoterapia ; : 106099, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38945491

ABSTRACT

This paper explores the potential of flavonoid alkaloids, a unique class of compounds that contain both flavonoid and alkaloid structures, as emerging targets for drug discovery. These compounds exhibit diverse biological activities, such as anti-inflammatory, anti-cancer, and anti-diabetic effects, which are attributed to the combination of different flavonoid scaffolds and alkaloid groups. Flavonoid alkaloids have attracted researchers' attention due to their diverse structures and important bio-activities. Therefore, this review summarizes recent advances in the extraction, purification, structural characterization, synthesis pathways and biological activities of flavonoid alkaloids from natural sources. Finally, the potential prospects and challenges associated with this class of compounds in pharmacological research are discussed along with details of a mechanistic investigation and future clinical applications in this research field.

4.
J Control Release ; 371: 498-515, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38849090

ABSTRACT

Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease characterized by synovial inflammation and inflammatory cellular infiltration. Functional cells in the RA microenvironment (RAM) are composed of activated immune cells and effector cells. Activated immune cells, including macrophages, neutrophils, and T cells, can induce RA. Effector cells, including synoviocytes, osteoclasts, and chondrocytes, receiving inflammatory stimuli, exacerbate RA. These functional cells, often associated with the upregulation of surface-specific receptor proteins and significant homing effects, can secrete pro-inflammatory factors and interfere with each other, thereby jointly promoting the progression of RA. Recently, some nanomedicines have alleviated RA by targeting and modulating functional cells with ligand modifications, while other nanoparticles whose surfaces are camouflaged by membranes or extracellular vesicles (EVs) of these functional cells target and attack the lesion site for RA treatment. When ligand-modified nanomaterials target specific functional cells to treat RA, the functional cells are subjected to attack, much like the intended targets. When functional cell membranes or EVs are modified onto nanomaterials to deliver drugs for RA treatment, functional cells become the attackers, similar to arrows. This study summarized how diversified functional cells serve as targets or arrows by engineered nanoparticles to treat RA. Moreover, the key challenges in preparing nanomaterials and their stability, long-term efficacy, safety, and future clinical patient compliance have been discussed here.


Subject(s)
Arthritis, Rheumatoid , Nanomedicine , Nanoparticles , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/immunology , Humans , Nanomedicine/methods , Animals , Nanoparticles/administration & dosage , Drug Delivery Systems , Antirheumatic Agents/administration & dosage , Antirheumatic Agents/pharmacology , Antirheumatic Agents/therapeutic use , Extracellular Vesicles
5.
Medicine (Baltimore) ; 103(26): e38618, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38941435

ABSTRACT

RATIONALE: Pulmonary tumor thrombotic microangiopathy (PTTM) is a rare but serious complication in patients with malignancy; its main manifestation includes acute pulmonary hypertension with severe respiratory distress. More than 200 cases have been reported since it was first identified in 1990. PTTM accounts for approximately 0.9% to 3.3% of deaths due to malignancy, but only a minority of patients are diagnosed ante-mortem, with most patients having a definitive diagnosis after autopsy. PATIENT CONCERNS: Two middle-aged women both died within a short period of time due to progressive dyspnea and severe pulmonary hypertension. DIAGNOSES: One patient was definitively confirmed as a gastrointestinal malignant tumor by liver puncture biopsy pathology. Ultimately, the clinical diagnosis was pulmonary tumor thrombotic microangiopathy. INTERVENTIONS: The patient was treated symptomatically with oxygen, diuresis, and anticoagulation, while a liver puncture was perfected to clarify the cause. OUTCOMES: Two cases of middle-aged female patients with rapidly progressive pulmonary hypertension and respiratory failure resulted in death with malignant neoplasm. LESSONS: PTTM has a rapid onset and a high morbidity and mortality rate. Our clinicians need to be more aware of the need for timely diagnosis through a targeted clinical approach, leading to more targeted treatment and a better prognosis.


Subject(s)
Thrombotic Microangiopathies , Humans , Female , Thrombotic Microangiopathies/etiology , Thrombotic Microangiopathies/diagnosis , Middle Aged , Fatal Outcome , Hypertension, Pulmonary/etiology , Gastrointestinal Neoplasms/complications , Gastrointestinal Neoplasms/pathology , Lung Neoplasms/complications , Lung Neoplasms/pathology , Lung Neoplasms/diagnosis
6.
Biology (Basel) ; 13(6)2024 May 30.
Article in English | MEDLINE | ID: mdl-38927275

ABSTRACT

In this study, juvenile crayfish hatched from the same population were cultured in different growing environments: pond (D1), paddy field (D2), and aquaculture barrel (D3), and fed for 60 days. Crayfishes were selected randomly, females and males, 50 tails each from six groups (D1-♀, D1-♂, D2-♀, D2-♂, D3-♀, D3-♂) to measure the following morphological traits: full length (X1), body length (X2), chelicerae length (X3), chelicerae weight (X4), cephalothorax length (X5), cephalothorax width (X6), cephalothorax height (X7), eye spacing (X8), caudal peduncle length (X9), and caudal peduncle weight (X10). We found that the coefficient of variation (CV) of X4 was the largest in each culture mode, and males (28.58%~38.67%) were larger than females (37.76%~66.74%). The CV of X4 of crayfish cultured in D1 and D2 was larger than that of D3. All traits except X8 were positively correlated with body weight (p < 0.05). After pathway analysis, we found that X4, X5, X7, and X10 were significantly correlated with the body weight of D1-♀; the equation was YD1-♀ = -29.803 + 1.249X4 + 0.505X5 + 0.701X7 + 1.483X10 (R2 = 0.947). However, X2, X4, and X6 were significantly correlated with the body weight of D1-♂; the equation was YD1-♂ = -40.881 + 0.39X2 + 0.845X4 + 1.142X6 (R2 = 0.927). In D2-♀, X1, X4, X5, and X10 were significantly correlated with body weight; the equation was YD2-♀ = -12.248 + 0.088X1 + 1.098X4 + 0.275X5 + 0.904X10 (R2 = 0.977). X4 and X5 played a major role in the body weight of D2-♂ with the equation: YD2-♂ = -24.871 + 1.177X4 + 0.902X5 (R2 = 0.973). X3 and X10 mainly contributed to the body weight of D3-♀ with the equation: YD3-♀ = -22.476 + 0.432X3 + 3.153X10 (R2 = 0.976). X1 and X4 mainly contributed to the body weight of D3-♂ with the equation: YD3-♂ = -34.434 + 0.363X1 + 0.669X4 (R2 = 0.918). Comparing the pathway analysis with the gray relation analysis, we could conclude that the traits most correlated with body weight in D1-♀ were X10 and X7; in D1-♂, X6; in D2-♀, X10, X1, and X5; in D2-♂, X5; in D3-♀, X10; and in D3-♂, X4 and X1.

7.
Zhongguo Zhong Yao Za Zhi ; 49(8): 2230-2246, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38812238

ABSTRACT

Total triterpenoids from the fruits of Chaenomeles speciosa(TCS) are active components in the prevention and treatment of gastric mucosal damage, which have potential anti-aging effects. However, it is still unclear whether TCS can improve gastric aging, especially its molecular mechanism against gastric aging. On this basis, this study explored the effect and mechanism of TCS on senescent GES-1 cells induced by D-galactose(D-gal) to provide scientific data for the clinical use of TCS to prevent gastric aging. GES-1 cells cultured in vitro and those transfected with overexpression GLS1(GLS1-OE) plasmid of glutaminase 1(GLS1) were induced to aging by D-gal, and then TCS and or GLS1 inhibitor bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl) ethyl sulfide(BPTES) were given. Cell survival rate, positive rate of ß-galactosidase(SA-ß-gal) staining, mitochondrial membrane potential(MMP), and apoptosis were investigated. GLS1 activity, levels of glutamine(Gln), glutamate(Glu), α-ketoglutarate(α-KG), urea, and ammonia in supernatant and cells were detected by enzyme-linked immunosorbent assay(ELISA) and colorimetric methods. The mRNA and protein expressions of GLS1 and the related genes of the mitochondrial apoptosis signaling pathway were measured by real-time fluorescence quantitative PCR and Western blot. The results manifested that compared with the D-gal model group and GLS1-OE D-gal model group, TCS significantly decreased the SA-ß-gal staining positive cell rate and MMP of D-gal-induced senescent GES-1 cells and GLS1-OE senescent GES-1 cells, inhibited the survival of senescent cells, and promoted their apoptosis(P<0.01). It decreased the activity of GLS1 and the content of Gln, Glu, α-KG, urea, and ammonia in supernatant and cell(P<0.01), reduced the concentration of cytochrome C(Cyto C) in mitochondria and the mRNA and protein expressions of GLS1 and proliferating nuclear antigen in cells(P<0.01). The mRNA expression of Bcl-2 and Bcl-xl, the protein expression of pro-caspase-9 and pro-caspase-3, and the ratio of Bcl-2/Bax and Bcl-xl/Bad in cells were decreased(P<0.01). Cyto C concentration in the cytoplasm, the mRNA expressions of Bax, Bad, apoptosis protease activating factor 1(Apaf-1), and protein expressions of cleaved-caspase-9, cleaved-caspase-3, cleaved-PARP-1 were increased(P<0.01). The aforementioned results indicate that TCS can counteract the senescent GES-1 cells induced by D-gal, and its mechanism may be closely related to suppressing the Gln/GLS1/α-KG metabolic axis, activating the mitochondrial apoptosis pathway, and thereby accelerating the apoptosis of the senescent cells and eliminating senescent cells.


Subject(s)
Apoptosis , Fruit , Galactose , Glutaminase , Glutamine , Mitochondria , Signal Transduction , Triterpenes , Apoptosis/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Triterpenes/pharmacology , Triterpenes/chemistry , Humans , Signal Transduction/drug effects , Cell Line , Fruit/chemistry , Glutamine/pharmacology , Glutamine/metabolism , Glutaminase/metabolism , Glutaminase/genetics , Cellular Senescence/drug effects , Ketoglutaric Acids/pharmacology , Ketoglutaric Acids/metabolism
8.
J Agric Food Chem ; 72(19): 11221-11229, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38703356

ABSTRACT

Liposcelis bostrychophila, commonly known as booklouse, is an important stored-product pest worldwide. Studies have demonstrated that booklices have developed resistance to several insecticides. In this study, an integument esterase gene, LbEST-inte4, with upregulated expression, was characterized in L. bostrychophila. Knockdown of LbEST-inte4 resulted in a substantial increase in the booklice susceptibility to malathion. Overexpression of LbEST-inte4 in Drosophila melanogaster significantly enhanced its malathion tolerance. Molecular modeling and docking analysis suggested potential interactions between LbEST-inte4 and malathion. When overexpressed LbEST-inte4 in Sf9 cells, a notable elevation in esterase activity and malathion tolerance was observed. HPLC analysis indicated that the LbEST-inte4 enzyme could effectively degrade malathion. Taken together, the upregulated LbEST-inte4 appears to contribute to malathion tolerance in L. bostrychophila by facilitating the depletion of malathion. This study elucidates the molecular mechanism underlying malathion detoxification and provides the foundations for the development of effective prevention and control measures against psocids.


Subject(s)
Esterases , Insect Proteins , Insecta , Insecticides , Malathion , Animals , Drosophila melanogaster , Esterases/metabolism , Esterases/genetics , Esterases/chemistry , Inactivation, Metabolic , Insect Proteins/genetics , Insect Proteins/metabolism , Insect Proteins/chemistry , Insecta/drug effects , Insecticide Resistance/genetics , Insecticides/metabolism , Insecticides/chemistry , Insecticides/pharmacology , Malathion/metabolism , Malathion/chemistry , Malathion/toxicity , Malathion/pharmacology
9.
Biochem Pharmacol ; 225: 116314, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38797271

ABSTRACT

Atherosclerosis, a chronic inflammatory disease, is the most relevant cause of carotid artery stenosis. Vascular endothelial cells (ECs) play a significant role in the development of atherosclerosis. In this chronic inflammatory environment, we aimed to investigate whether PCSK9 could mitigate atherosclerosis progression by reducing tissue factor expression in ECs via in vivo and in vitro assays. In vivo, we investigated the effect of PCSK9 inhibition on preventing atherosclerotic lesion formation in ApoE-/- mice fed a western diet. The results showed that inhibiting PCSK9 could significantly downregulate the protein expression of tissue factor (TF) in ECs to reduce the area of atherosclerotic plaques. In vitro, we incubated human umbilical vein endothelial cells (HUVECs) with lipopolysaccharide (LPS). We found that LPS-induced TF elevation was suppressed by a PCSK9 inhibitor at both the mRNA and protein levels and that the TLR4/NF-κB pathway was also suppressed by a PCSK9 inhibitor. With respect to plasma samples from patients with carotid artery stenosis, we also demonstrated that the expression of TF was positively correlated with that of PCSK9. Thus, in addition to regulating lipid metabolism, the regulation of endothelial cell TF expression through the TLR4/NF-κB pathway may be a potential mechanism of PCSK9 in promoting atherosclerotic carotid stenosis.


Subject(s)
Apolipoproteins E , Carotid Stenosis , Human Umbilical Vein Endothelial Cells , Mice, Inbred C57BL , NF-kappa B , Proprotein Convertase 9 , Signal Transduction , Thromboplastin , Toll-Like Receptor 4 , Animals , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Mice , NF-kappa B/metabolism , Proprotein Convertase 9/genetics , Proprotein Convertase 9/metabolism , Humans , Carotid Stenosis/metabolism , Male , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Apolipoproteins E/deficiency , Human Umbilical Vein Endothelial Cells/metabolism , Thromboplastin/metabolism , Thromboplastin/genetics , Thromboplastin/biosynthesis , Signal Transduction/physiology , Mice, Knockout, ApoE , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Mice, Knockout , PCSK9 Inhibitors , Female
10.
Regen Biomater ; 11: rbae046, 2024.
Article in English | MEDLINE | ID: mdl-38769994

ABSTRACT

Black phosphorus (BP), as a representative metal-free semiconductor, has been extensively explored. It has a higher drug loading capacity in comparison to conventional materials and also possesses excellent biocompatibility and biodegradability. Furthermore, BP nanosheets can enhance the permeability of the blood-brain barrier (BBB) upon near-infrared (NIR) irradiation, owing to their photothermal effect. However, the inherent instability of BP poses a significant limitation, highlighting the importance of surface modification to enhance its stability. Ischemic stroke (IS) is caused by the occlusion of blood vessels, and its treatment is challenging due to the hindrance caused by the BBB. Therefore, there is an urgent need to identify improved methods for bypassing the BBB for more efficient IS treatment. This research devised a novel drug delivery approach based on pterostilbene (Pte) supported by BP nanosheets, modified with polydopamine (PDA) to form BP-Pte@PDA. This system shows robust stability and traverses the BBB using effective photothermal mechanisms. This enables the release of Pte upon pH and NIR stimuli, offering potential therapeutic advantages for treating IS. In a middle cerebral artery occlusion mouse model, the BP-Pte@PDA delivery system significantly reduced infarct size, and brain water content, improved neurological deficits, reduced the TLR4 inflammatory factor expression, and inhibited cell apoptosis. In summary, the drug delivery system fabricated in this study thus demonstrated good stability, therapeutic efficacy, and biocompatibility, rendering it suitable for clinical application.

11.
Life (Basel) ; 14(5)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38792567

ABSTRACT

Niclosamide (NIC) is a potent salicylanilide molluscicide/helminthicide commonly utilized for parasite and mollusc control in aquatic environments. Due to its persistent presence in water bodies, there is growing concern regarding its impact on aquatic organisms, yet this remains inadequately elucidated. Consequently, this study aims to assess the hepatotoxic effects and detoxification capacity of black carp (Mylopharyngodon piceus) in a semi-static system, employing various parameters for analysis. NIC was applied to juvenile black carp at three different concentrations (0, 10 and 50 µg/L) for 28 days in an environmentally realistic manner. Exposure to 50 µg/L NIC resulted in an increase in hepatic lysozyme (LYZ), alkaline phosphatase (ALP), and complement 4 (C4) levels while simultaneously causing a decrease in peroxidase (POD) activity. Additionally, NIC exposure exhibited a dose-dependent effect on elevating serum levels of LYZ, ALP, complement 3 (C3), C4, and immunoglobulin T (IgT). Notably, the mRNA levels of immune-related genes tnfα, il8, and il6, as well as nramp and leap2, were upregulated in fish exposed to NIC. RNA-Seq analysis identified 219 differentially expressed genes (DEGs) in M. piceus after NIC exposure, with 94 upregulated and 125 downregulated genes. KEGG and GO analyses showed enrichment in drug metabolism pathways and activities related to oxidoreductase, lip oprotein particles, and cholesterol transport at 50 µg/L NIC. Additionally, numerous genes associated with lipid metabolism, oxidative stress, and innate immunity were upregulated in NIC-exposed M. piceus. Taken together, these findings indicate that NIC has the potential to cause hepatotoxicity and immunotoxicity in M. piceus. This research offers important insights for further understanding the impact of molluscicide/helminthicide aquatic toxicity in ecosystems.

12.
Int J Biol Macromol ; 268(Pt 2): 131950, 2024 May.
Article in English | MEDLINE | ID: mdl-38685547

ABSTRACT

Hydrogels with favorable biocompatibility and antibacterial properties are essential in postoperative wound hemorrhage care, facilitating rapid wound healing. The present investigation employed electrostatic adsorption of black phosphorus nanosheets (BPNPs) and nano­silver (AgNPs) to cross-link the protonated amino group NH3+ of quaternized chitosan (QCS) with the hydroxyl group of hyaluronic acid (HA). The electrostatic interaction between the two groups resulted in the formation of a three-dimensional gel network structure. Additionally, the hydrogel containing AgNPs deposited onto BPNPs was assessed for its antibacterial properties and effects on wound healing. Hydrogel demonstrated an outstanding drug-loading capacity and could be employed for wound closure. AgNPs loaded on the BPNPs released silver ions and exhibited potent antibacterial properties when exposed to 808 nm near-infrared (NIR) radiation. The ability of the hydrogel to promote wound healing in an acute wound model was further evaluated. The BPNPs were combined with HA and QCS in the aforementioned hydrogel system to improve adhesion, combine the photothermal and antibacterial properties of the BPNPs, and promote wound healing. Therefore, the reported hydrogels displayed excellent biocompatibility and hold significant potential for application in the field of tissue engineering for skin wound treatment.


Subject(s)
Anti-Bacterial Agents , Chitosan , Hydrogels , Metal Nanoparticles , Phosphorus , Silver , Skin , Wound Healing , Chitosan/chemistry , Chitosan/pharmacology , Wound Healing/drug effects , Silver/chemistry , Silver/pharmacology , Phosphorus/chemistry , Metal Nanoparticles/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Skin/drug effects , Mice , Rats , Male
13.
Clin Case Rep ; 12(4): e8569, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38617072

ABSTRACT

In outpatient settings, Mycobacterium chelonae complex infection brought on by cosmetic injections are rather uncommon. We came across a case of infection brought on by a commercial stem cell injection.

14.
Foods ; 13(7)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38611384

ABSTRACT

Chrysanthemum tea, a typical health tea with the same origin as medicine and food, is famous for its unique health benefits and flavor. The taste and sensory quality of chrysanthemum (Juhua) tea are mainly determined by secondary metabolites. Therefore, the present research adopted untargeted metabolomics combined with an electronic tongue system to analyze the correlation between the metabolite profiles and taste characteristics of different varieties of chrysanthemum tea. The results of sensory evaluation showed that there were significant differences in the sensory qualities of five different varieties of chrysanthemum tea, especially bitterness and astringency. The results of principal component analysis (PCA) indicated that there were significant metabolic differences among the five chrysanthemum teas. A total of 1775 metabolites were identified by using untargeted metabolomics based on UPLC-Q-TOF/MS analysis. According to the variable importance in projection (VIP) values of the orthogonal projections to latent structures discriminant analysis (OPLS-DA), 143 VIP metabolites were found to be responsible for metabolic changes between Huangju and Jinsi Huangju tea; among them, 13 metabolites were identified as the key metabolites of the differences in sensory quality between them. Kaempferol, luteolin, genistein, and some quinic acid derivatives were correlated with the "astringency" attributes. In contrast, l-(-)-3 phenyllactic acid and L-malic acid were found to be responsible for the "bitterness" and "umami" attributes in chrysanthemum tea. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed that the flavonoid and flavonol biosynthesis pathways had important effects on the sensory quality of chrysanthemum tea. These findings provide the theoretical basis for understanding the characteristic metabolites that contribute to the distinctive sensory qualities of chrysanthemum tea.

15.
Biomolecules ; 14(4)2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38672467

ABSTRACT

Inflammation is a pivotal factor in the development and advancement of conditions like NAFLD and asthma. Diet can affect several phases of inflammation and significantly influence multiple inflammatory disorders. Siraitia grosvenorii, a traditional Chinese edible and medicinal plant, is considered beneficial to health. Flavonoids can suppress inflammatory cytokines, which play a crucial role in regulating inflammation. In the present experiments, kaempferol 3-O-α-L-rhamnoside-7-O-ß-D-xylosyl(1→2)-O-α-L-rhamnoside (SGPF) is a flavonoid glycoside that was first isolated from S. grosvenorii. A series of experimental investigations were carried out to investigate whether the flavonoid component has anti-inflammatory and hepatoprotective effects in this plant. The researchers showed that SGPF has a stronger modulation of protein expression in LPS-induced macrophages (MH-S) and OA-induced HepG2 cells. The drug was dose-dependent on cells, and in the TLR4/NF-κB/MyD88 pathway and Nrf2/HO-1 pathway, SGPF regulated all protein expression. SGPF has a clear anti-inflammatory and hepatoprotective function in inflammatory conditions.


Subject(s)
Anti-Inflammatory Agents , Flavonoids , Glycosides , NF-kappa B , Toll-Like Receptor 4 , Humans , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Glycosides/pharmacology , Glycosides/chemistry , Flavonoids/pharmacology , Flavonoids/chemistry , Flavonoids/isolation & purification , Hep G2 Cells , Animals , Toll-Like Receptor 4/metabolism , NF-kappa B/metabolism , Cucurbitaceae/chemistry , Mice , Macrophages/drug effects , Macrophages/metabolism , Myeloid Differentiation Factor 88/metabolism , Signal Transduction/drug effects , NF-E2-Related Factor 2/metabolism , Protective Agents/pharmacology , Protective Agents/chemistry , Lipopolysaccharides/pharmacology , Heme Oxygenase-1/metabolism
16.
Mediators Inflamm ; 2024: 8869510, 2024.
Article in English | MEDLINE | ID: mdl-38445290

ABSTRACT

Inflammation is a complex host defensive response against various disease-associated pathogens. A baseline extent of inflammation is supposed to be tightly associated with a sequence of immune-modulated processes, resulting in the protection of the host organism against pathogen invasion; however, as a matter of fact is that an uncontrolled inflammatory cascade is the main factor responsible for the host damage, accordingly suggesting a significant and indispensable involvement of negative feedback mechanism in modulation of inflammation. Evidence accumulated so far has supported a repressive effect of the canonical Wnt/ß-catenin pathway on microbial-triggered inflammation via diverse mechanisms, although that consequence is dependent on the cellular context, types of stimuli, and cytokine environment. It is of particular interest and importance to comprehend the precise way in which the Wnt/ß-catenin pathway is activated, due to its essential anti-inflammatory properties. It is assumed that an inflammatory milieu is necessary for initiating and activating this signaling, implying that Wnt activity is responsible for shielding tissues from overwhelming inflammation, thus sustaining a balanced physiological condition against bacterial infection. This review gathers the recent efforts to elucidate the mechanistic details through how Wnt/ß-catenin signaling modulates anti-inflammatory responses in response to bacterial infection and its interactions with other inflammatory signals, which warrants further study for the development of specific interventions for the treatment of inflammatory diseases. Further clinical trials from different disease settings are required.


Subject(s)
Bacterial Infections , beta Catenin , Humans , Bacteria , Wnt Signaling Pathway , Inflammation , Anti-Inflammatory Agents
17.
Ecol Lett ; 27(3): e14384, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38426584

ABSTRACT

Although native species diversity is frequently reported to enhance invasion resistance, within-species diversity of native plants can also moderate invasions. While the positive diversity-invasion resistance relationship is often attributed to competition, indirect effects mediated through plant-soil feedbacks can also influence the relationship. We manipulated the genotypic diversity of an endemic species, Scirpus mariqueter, and evaluated the effects of abiotic versus biotic feedbacks on the performance of a global invader, Spartina alterniflora. We found that invader performance on live soils decreased non-additively with genotypic diversity of the native plant that trained the soils, but this reversed when soils were sterilized to eliminate feedbacks through soil biota. The influence of soil biota on the feedback was primarily associated with increased levels of microbial biomass and fungal diversity in soils trained by multiple-genotype populations. Our findings highlight the importance of plant-soil feedbacks mediating the positive relationship between genotypic diversity and invasion resistance.


Subject(s)
Plants , Soil , Feedback , Poaceae , Genotype , Soil Microbiology , Introduced Species
18.
Clin Radiol ; 79(6): e868-e877, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38548547

ABSTRACT

AIM: Occurrence of anastomotic biliary stricture (AS) remains an essential issue following hepatobiliary surgeries, and percutaneous transhepatic cholangioscopy (PTCS) has great therapeutic significance in handling refractory AS for patients with altered gastrointestinal anatomy after cholangio-jejunostomy. This present study aimed to investigate feasibility of PTCS procedures in AS patients for therapeutic indications. MATERIALS AND METHODS: This study was a single-center, retrospective cohort study with a total number of 124 consecutive patients who received therapeutic PTCS due to AS. Clinical success rate, required number, and adverse events of therapeutic PTCS procedures as well as patients survival state were reviewed. RESULTS: These 124 patients previously underwent choledochojejunostomy or hepatico-jejunostomy, and there was post-surgical altered gastrointestinal anatomy. Overall, 366 therapeutic PTCS procedures were performed for these patients through applying rigid choledochoscope, and the median time of PTCS procedures was 3 (1-11). Among these patients, there were 34 cases (27.32%) accompanied by biliary strictures and 100 cases (80.65%) were also combined with biliary calculi. After therapeutic PTCS, most patients presented with relieved clinical manifestations and improved liver functions. The median time of follow-up was 26 months (2-86 months), and AS was successfully managed through PTCS procedures in 104 patients (83.87%). During the follow-up period, adverse events occurred in 81 cases (65.32%), most of which were tackled through supportive treatment. CONCLUSION: PTCS was a feasible, safe and effective therapeutic modality for refractory AS, which may be a promising alternative approach in clinical cases where the gastrointestinal anatomy was changed after cholangio-jejunostomy.


Subject(s)
Anastomosis, Surgical , Cholestasis , Humans , Male , Female , Retrospective Studies , Middle Aged , Aged , Adult , Constriction, Pathologic/surgery , Constriction, Pathologic/diagnostic imaging , Cholestasis/surgery , Cholestasis/diagnostic imaging , Cholestasis/etiology , Anastomosis, Surgical/adverse effects , Feasibility Studies , Endoscopy, Digestive System/methods , Treatment Outcome , Postoperative Complications/diagnostic imaging
19.
Macromol Biosci ; : e2300528, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38444237

ABSTRACT

Hydrogel wound dressing can accelerate angiogenesis to achieve rapid wound healing, but traditional hydrogel dressings are difficult to meet the repair of joint sites due to their low mechanical strength. Therefore, we constructed the gel system by designing the chemical-physical interpenetrating network structure to achieve high strength and high toughness of the hydrogel. The high-strength double-network hydrogels were synthesized by simple free radical polymerization and low-temperature physicochemical cross-linking in our experiments. The suspension was obtained by green reduction of graphene oxide with carboxymethyl chitosan, followed by the introduction of acrylamide (AM) to form a covalent cross-linked network, which was immersed in ferric chloride solution to form metal ligand bonds, and finally the chemical-physical dual cross-linked network hydrogel wound dressing was prepared. Here, reduced graphene oxide can enhance electrical conductivity and excellent near-infrared photothermal effect to the hydrogel. The cell viability of this novel wound dressing was above 90.0%, its hemolysis rate was below 2.0%, and the electrical conductivity could reach (6.89 ± 0.07 (mS/cm)). In addition, the stress-strain curve demonstrated that the double cross-linked network hydrogel could reach a stress of more than 0.8 MPa at 82.0% strain, and the cyclic compression experiment shows that it can still recover its original shape after five times of repeated compression. This work can provide a reference for the exploitation of high mechanical strength hydrogel wound dressings with good electrical conductivity and near-infrared photothermal effect. This article is protected by copyright. All rights reserved.

20.
Mol Ther Nucleic Acids ; 35(2): 102164, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38549914

ABSTRACT

Transforming growth factor ß 1 (TGF-ß1), as the most abundant signaling molecule in bone matrix, is essential for bone homeostasis. However, the signaling transduction of TGF-ß1 in the bone-forming microenvironment remains unknown. Here, we showed that microRNA-191 (miR-191) was downregulated during osteogenesis and further decreased by osteo-favoring TGF-ß1 in bone marrow mesenchymal stem cells (BMSCs). MiR-191 was lower in bone tissues from children than in those from middle-aged individuals and it was negatively correlated with collagen type I alpha 1 chain (COL1A1). MiR-191 depletion significantly increased osteogenesis and bone formation in vivo. Hydrogels embedded with miR-191-low BMSCs displayed a powerful bone repair effect. Mechanistically, transcription factors BMI1 and SMAD2 coordinately controlled miR-191 level. In detail, BMI1 and pSMAD2 were both upregulated by TGF-ß1 under osteogenic condition. SMAD2 activated miR-191 transcription, while BMI1 competed with SMAD2 for binding to miR-191 promoter region, thus disturbing the activation of SMAD2 on miR-191 and reducing miR-191 level. Altogether, our findings reveal that miR-191 regulated by TGF-ß1-induced BMI1 and SMAD2 negatively modulated bone formation and regeneration, and inhibition of miR-191 might be therapeutically useful to enhance bone repair in clinic.

SELECTION OF CITATIONS
SEARCH DETAIL
...