Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Anal Biochem ; : 115583, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38838931

ABSTRACT

Multiplex detection can enhance diagnostic precision and improve diagnostic efficiency, providing important assistance for epidemiological investigation and epidemic prevention. There is a great need for multi-detection sensing platforms to accurately diagnose diseases. Herein, we reported a µPAD-based chemiluminescence (CL) assay for ultrasensitive multiplex detection of AIV biomarkers, based on three DNAzyme/Lum/PEI/CaCO3. Three time-resolved CL signals were sequentially generated with detection limits of 0.32, 0.34, and 0.29 pM for H1N1, H7N9, and H5N1, respectively, and with excellent selectivity against interfering DNA. The recovery test in human serum displayed satisfactory analysis capabilities for complex biological samples. The µPAD-based CL assay achieved multiplex detection within 70 s, with a high time resolution of 20 s. The proposed strategy has the advantages of low cost, high sensitivity, good selectivity, and wide time resolution, the µPAD-based CL assay has shown great potential in the early and accurate diagnosis of diseases.

2.
Adv Healthc Mater ; : e2400593, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38728574

ABSTRACT

Phototherapy, including photodynamic therapy (PDT) and photothermal therapy (PTT), is a promising treatment approach for multidrug resistant infections. PDT/PTT combination therapy can more efficiently eliminate pathogens without drug resistance. The key to improve the efficacy of photochemotherapy is the utilization efficiency of non-radiation energy of phototherapy agents. Herein, a facile phototherapy molecule (SCy-Le) with the enhancement of non-radiative energy transfer is designed by an acid stimulation under a single laser. Introduction of the protonated receptor into SCy-Le results in a distorted intramolecular charge in the infected acidic microenvironment, pH ≈ 5.5, which in turn, enhances light capture, reduces the singlet-triplet transition energies (ΔES1-T1), promotes electron system crossing, enhances capacity of reactive oxygen species generation, and causes a significant increase in temperature by improving vibrational relaxation. SCy-Le shows more than 99% bacterial killing rate against both methicillin-resistant Staphylococcus aureus and its biofilms in vitro and causes bacteria-induced wound healing in mice. This work will provide a new perspective for the design of phototherapy agents, and the emerging photochemotherapy will be a promising approach to combat the problem of antibiotic resistance.

3.
Arch Gynecol Obstet ; 309(5): 1787-1799, 2024 May.
Article in English | MEDLINE | ID: mdl-38376520

ABSTRACT

BACKGROUND: Preimplantation genetic testing (PGT), also referred to as preimplantation genetic diagnosis (PGD), is an advanced reproductive technology used during in vitro fertilization (IVF) cycles to identify genetic abnormalities in embryos prior to their implantation. PGT is used to screen embryos for chromosomal abnormalities, monogenic disorders, and structural rearrangements. DEVELOPMENT OF PGT: Over the past few decades, PGT has undergone tremendous development, resulting in three primary forms: PGT-A, PGT-M, and PGT-SR. PGT-A is utilized for screening embryos for aneuploidies, PGT-M is used to detect disorders caused by a single gene, and PGT-SR is used to detect chromosomal abnormalities caused by structural rearrangements in the genome. PURPOSE OF REVIEW: In this review, we thoroughly summarized and reviewed PGT and discussed its pros and cons down to the minutest aspects. Additionally, recent studies that highlight the advancements of PGT in the current era, including their future perspectives, were reviewed. CONCLUSIONS: This comprehensive review aims to provide new insights into the understanding of techniques used in PGT, thereby contributing to the field of reproductive genetics.


Subject(s)
Genetic Testing , Preimplantation Diagnosis , Pregnancy , Female , Humans , Genetic Testing/methods , Preimplantation Diagnosis/methods , Embryo Implantation , Fertilization in Vitro , Aneuploidy
4.
FASEB J ; 38(3): e23437, 2024 02 15.
Article in English | MEDLINE | ID: mdl-38305849

ABSTRACT

Impaired functionality and loss of islet ß-cells are the primary abnormalities underlying the pathogenesis of both type 1 and 2 diabetes (T1DM and T2DM). However, specific therapeutic and preventive mechanisms underlying these conditions remain unclear. Mitogen-activated protein kinase phosphatase-5 (MKP-5) has been implicated in carcinogenesis, lipid metabolism regulation, and immune cell activation. In a previous study, we demonstrated the involvement of exogenous MKP-5 in the regulation of obesity-induced T2DM. However, the role of endogenous MKP-5 in the T1DM and T2DM processes is unclear. Thus, mice with MKP-5 knockout (KO) were generated and used to establish mouse models of both T1DM and T2DM. Our results showed that MKP-5 KO exacerbated diabetes-related symptoms in mice with both T1DM and T2DM. Given that most phenotypic studies on islet dysfunction have focused on mice with T2DM rather than T1DM, we specifically aimed to investigate the role of endoplasmic reticulum stress (ERS) and autophagy in T2DM KO islets. To accomplish this, we performed RNA sequence analysis to gain comprehensive insight into the molecular mechanisms associated with ERS and autophagy in T2DM KO islets. The results showed that the islets from mice with MKP-5 KO triggered 5' adenosine monophosphate-activated protein kinase (AMPK)-mediated autophagy inhibition and glucose-regulated protein 78 (GRP-78)-dominated ERS. Hence, we concluded that the autophagy impairment, resulting in islet dysfunction in mice with MKP-5 KO, is mediated through GRP-78 involvement. These findings provide valuable insights into the molecular pathogenesis of diabetes and highlight the significant role of MKP-5. Moreover, this knowledge holds promise for novel therapeutic strategies targeting MKP-5 for diabetes management.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Islets of Langerhans , Mice , Animals , Mitogen-Activated Protein Kinases/metabolism , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 1/metabolism , Phosphates/metabolism , Islets of Langerhans/metabolism
5.
Front Genet ; 14: 1221853, 2023.
Article in English | MEDLINE | ID: mdl-37795245

ABSTRACT

Hereditary spherocytosis (HS), the most common inherited hemolytic anemia disorder, is characterized by osmotically fragile microspherocytic red cells with a reduced surface area on the peripheral blood smear. Pathogenic variants in five erythrocyte membrane structure-related genes ANK1 (Spherocytosis, type 1; MIM#182900), SPTB (Spherocytosis, type 2; MIM#616649), SPTA1 (Spherocytosis, type 3; MIM#270970), SLC4A1 (Spherocytosis, type 4; MIM#612653) and EPB42 (Spherocytosis, type 5; MIM#612690) have been confirmed to be related to HS. There have been many studies on the pathogenic variants and mechanisms of HS, however, studies on how to manage the transmission of HS to the next-generation have not been reported. In this study, we recruited a patient with HS. Targeted next-generation sequencing with a panel of 208 genes related to blood system diseases detected a novel heterozygous variant in the SPTB: c.300+2dup in the proband. Sanger sequencing of variant alleles and haplotype linkage analysis of single nucleotide polymorphism (SNP) based on next-generation sequencing were performed simultaneously. Five embryos were identified with one heterozygous and four not carrying the SPTB variant. Single-cell amplification and whole genome sequencing showed that three embryos had varying degrees of trisomy mosaicism. One of two normal embryos was transferred to the proband. Ultimately, a healthy boy was born, confirmed by noninvasive prenatal testing for monogenic conditions (NIPT-M) to be disease-free. This confirmed our successful application of PGT in preventing transmission of the pathogenic variant allele in the HS family.

6.
Sensors (Basel) ; 23(5)2023 Feb 25.
Article in English | MEDLINE | ID: mdl-36904774

ABSTRACT

KNL1 (kinetochore scaffold 1) has attracted much attention as one of the assembly elements of the outer kinetochore, and the functions of its different domains have been gradually revealed, most of which are associated with cancers, but few links have been made between KNL1 and male fertility. Here, we first linked KNL1 to male reproductive health and the loss-function of KNL1 resulted in oligospermia and asthenospermia in mice (an 86.5% decrease in total sperm number and an 82.4% increase in static sperm number, respectively) through CASA (computer-aided sperm analysis). Moreover, we introduced an ingenious method to pinpoint the abnormal stage in the spermatogenic cycle using flow cytometry combined with immunofluorescence. Results showed that 49.5% haploid sperm was reduced and 53.2% diploid sperm was increased after the function of KNL1 was lost. Spermatocytes arrest was identified at the meiotic prophase I of spermatogenesis, which was induced by the abnormal assembly and separation of the spindle. In conclusion, we established an association between KNL1 and male fertility, providing a guide for future genetic counseling regarding oligospermia and asthenospermia, and a powerful method for further exploring spermatogenic dysfunction by utilizing flow cytometry and immunofluorescence.


Subject(s)
Asthenozoospermia , Microtubule-Associated Proteins , Oligospermia , Animals , Male , Mice , Flow Cytometry , Fluorescent Antibody Technique , Meiosis , Semen , Microtubule-Associated Proteins/genetics
7.
J Clin Med ; 12(3)2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36769483

ABSTRACT

X-linked myopia 26 (Myopia 26, MIM #301010), which is caused by the variants of ARR3 (MIM *301770), is characterized by female-limited early-onset high myopia (eo-HM). Clinical characteristics include a tigroid appearance in the fundus and a temporal crescent of the optic nerve head. At present, the limited literature on eo-HM caused by ARR3 mutations shows that its inheritance mode is complex, which brings certain difficulties to pre-pregnancy genetic counseling, pre-implantation genetic diagnosis, and prenatal diagnosis. Here, we investigated the genetic underpinning of a Chinese family with eo-HM. Whole exome sequencing of the proband revealed a novel frameshift mutation in ARR3 (NM_004312, exon10, c.666delC, p. Asn222LysfsTer22). Although the mode of inheritance of the eo-HM family fits the X-linked pattern of ARR3, the phenotypes of three patients deviate from the typical early-onset high myopia. Through X-chromosome inactivation experiments, the patient's different phenotypes can be precisely explained. In addition, this study not only enhanced the correlation between ARR3 and early-onset high myopia but also provided explanations for different phenotypes, which may inspire follow-up studies. Our results enrich the knowledge of the variant spectrum in ARR3 and provide critical information for preimplantation and prenatal genetic testing, diagnosis, and counseling.

8.
J Mater Chem B ; 11(10): 2200-2206, 2023 03 08.
Article in English | MEDLINE | ID: mdl-36785906

ABSTRACT

Developing functionalized nanomaterials with strong chemiluminescence (CL) properties is highly significant for ultrasensitive bioanalysis. Here, we report chitosan (CS), luminol, and Co2+-functionalized flower-like gold nanoparticles (Co2+/CS/Lum/AuNFs) with strong CL for the label-free sensing of the HCV core protein (HCVcp). The Co2+/CS/Lum/AuNFs exhibited a greatly enhanced CL emission at around 425 nm, which is 50 times stronger than that of CS/Lum/AuNFs, and is superior to other commonly reported CL nanomaterials. The HCVcp aptamer (HCVcp-apt) further functionalized the surface of the Co2+/CS/Lum/AuNFs through electrostatic interactions blocked the Co2+ catalytic site, depressing the CL. Owing to the high affinity of HCVcp for the HCVcp-apt, the presence of HCVcp predominated its binding and effectively separated the HCVcp-apt from the surface of the Co2+/CS/Lum/AuNFs, so that the CL intensity was significantly enhanced. As the results showed, the HCVcp-apt/Co2+/CS/Lum/AuNFs were successfully used to detect the HCVcp in human serum samples with a linear range from 0.50 ng mL-1 to 1.00 µg mL-1, a detection limit of 0.16 ng mL-1 and an excellent selectivity over other analogs. The strategy is universal for the development of the ultrasensitive detection of other proteins in the field of early disease diagnostics.


Subject(s)
Chitosan , Hepatitis C , Metal Nanoparticles , Humans , Metal Nanoparticles/chemistry , Gold/chemistry , Luminescence , Luminol/chemistry , Chitosan/chemistry , Hepatitis C/diagnosis
9.
Hereditas ; 159(1): 47, 2022 Dec 27.
Article in English | MEDLINE | ID: mdl-36572937

ABSTRACT

BACKGROUND: This study utilized bioinformatics to analyze the underlying biological mechanisms involved in adipogenic differentiation, synthesis of the extracellular matrix (ECM), and angiogenesis during preadipocyte differentiation in human Simpson-Golabi-Behmel syndrome at different time points and identify targets that can potentially improve fat graft survival. RESULTS: We analyzed two expression profiles from the Gene Expression Omnibus and identified differentially expressed genes (DEGs) at six different time points after the initiation of preadipocyte differentiation. Related pathways were identified using Gene Ontology/Kyoto Encyclopedia of Genes and Genomes analyses and Gene Set Enrichment Analysis (GSEA). We further constructed a protein-protein interaction (PPI) network and its central genes. The results showed that upregulated DEGs were involved in cell differentiation, lipid metabolism, and other cellular activities, while downregulated DEGs were associated with angiogenesis and development, ECM tissue synthesis, and intercellular and intertissue adhesion. GSEA provided a more comprehensive basis, including participation in and positive regulation of key pathways of cell metabolic differentiation, such as the "peroxisome proliferator-activated receptor signaling pathway" and the "adenylate-activated protein kinase signaling pathway," a key pathway that negatively regulates pro-angiogenic development, ECM synthesis, and adhesion. CONCLUSIONS: We identified the top 20 hub genes in the PPI network, including genes involved in cell differentiation, ECM synthesis, and angiogenesis development, providing potential targets to improve the long-term survival rate of fat grafts. Additionally, we identified drugs that may interact with these targets to potentially improve fat graft survival.


Subject(s)
Gene Expression Profiling , Protein Interaction Maps , Humans , Gene Expression Profiling/methods , Biomarkers , Protein Interaction Maps/genetics , Cell Differentiation
10.
RSC Adv ; 12(54): 35477-35483, 2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36540215

ABSTRACT

Phototheranostic probes have been proven to be a promising option for cancer diagnosis and treatment. However, near-infrared phototheranostic probes with specific tumor microenvironment responsiveness are still in demand. In this paper, a carboxylesterase (CES)-responsive near-infrared phototheranostic probe was developed by incorporating 6-acetamidohexanoic acid into a hemicyanine dye through an ester bond. The probe exhibits highly sensitive and selective fluorescence enhancement towards CES because CES-catalyzed cleavage of the ester bond leads to the release of the fluorophore. By virtue of its near-infrared analytical wavelengths and high sensitivity, the probe has been employed for endogenous CES activatable fluorescence imaging of tumor cells. Moreover, under 660 nm laser irradiation, the probe can generate toxic reactive oxygen species and efficiently kill tumor cells, with low cytotoxicity in dark. As far as we know, the probe was the first CES-responsive phototheranostic probe with both near-infrared analytical wavelengths and photosensitive capacity, which may be useful in the real-time and in situ imaging of CES as well as imaging-guided photodynamic therapy of tumors. Therefore, the proposed probe may have wide application prospect in cancer theranostics.

11.
Biomed Pharmacother ; 153: 113506, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36076595

ABSTRACT

As the sixth leading cause of cancer death, esophageal cancer is threatening the life of people worldwide. Traditional treatments, such as surgery, chemotherapy, radiotherapy, are facing always augmented challenges including invasion, multidrug resistance (MDR), off-target toxicity. Chemo & Photodynamic synergistic therapy represents one promising strategy for improved treatment efficiency. But it is still hindered by the lack of tumor targeting, deleterious side effects, and unfavorable microenvironment for photodynamic therapy (PDT). To overcome those obstacles, one theranostic nano-assambly drug, GCDs-Ce6/Pt-EGF, was designed and fabricated. Green fluorescence carbon dots (GCDs) with the excellent optical properties, modifiability and low toxicity were prepared as drug carrier. Epidermal growth factor (EGF) was conjugated to the nano-assembly to realize tumor specific targeting. Chlorin e6 (Ce6) in the presence of laser irradiation achieved PDT by generating proapoptosis reactive oxygen species (ROS). Moreover, Ce6 incorporated into GCDs endowed the nano-assambly imaging ability and facilitate image-guided therapy. Pt(IV), cisplatin prodrug, in the nano-assambly depleted the glutathione (GSH) of tumor microenvironment when it was reduced to cytotoxicity Pt(II). Compared with single treatment, GCDs-Ce6/Pt-EGF exhibited enhanced tumor cell killing capacity and better biosafety in vitro and in vivo, especially for EGFR bearing tumor. It paved ways for developing novel theranostic agent to be potentially applied in clinic.


Subject(s)
Esophageal Neoplasms , Nanoparticles , Photochemotherapy , Porphyrins , Cell Line, Tumor , Epidermal Growth Factor , Esophageal Neoplasms/drug therapy , Glutathione/pharmacology , Humans , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Porphyrins/pharmacology , Precision Medicine , Theranostic Nanomedicine/methods , Tumor Microenvironment
12.
Spectrochim Acta A Mol Biomol Spectrosc ; 283: 121731, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36007349

ABSTRACT

Sulfur dioxide (SO2) is a key molecule in organisms that is involved in the regulation of different physiological procedures. Aberrant SO2 causes a variety of diseases, such as cancer and neurodegeneration. Thus, sensitive and selective detection of SO2 is of great importance. Based on the Förster resonance energy transfer (FRET) between green fluorescence carbon dots (GCDs) donor and amide-linked near-infrared fluorescence emissive organic small molecular dye (CDDBT) acceptor, one ratiometric fluorescent nano platform, Mito-GCDs-CDDBT for mitochondria SO2 sensing was constructed. In this FRET sensing system, CDDBT served as the receptor for SO2, and the presence of SO2 enhanced GCDs green fluorescence signal and quenched CDDBT near-infrared fluorescence signal due to the disruption of FRET. Mito-GCDs-CDDBT could sensitively detect SO2 with a detection limit of as low as 0.701 µM. Meanwhile, Mito-GCDs-CDDBT achieved fluorescence imaging to measure the response of cellular exogenous and endogenous SO2 with remarkable mitochondrial targeting. Moreover, Mito-GCDs-CDDBT also realized SO2 sensing in vivo including zebrafish and mice. The as-prepared versatile nanoplatform displayed several advantages, such as mitochondria targeting, FRET-based sensitive detection, and sensing capabilities in biological milieu. Potentially, it could be applied in the diagnostics of SO2 involved diseases.


Subject(s)
Fluorescence Resonance Energy Transfer , Sulfur Dioxide , Animals , Fluorescence Resonance Energy Transfer/methods , Fluorescent Dyes , HeLa Cells , Humans , Mice , Mitochondria , Zebrafish
13.
Int J Mol Sci ; 23(10)2022 May 11.
Article in English | MEDLINE | ID: mdl-35628193

ABSTRACT

Pulmonary fibrosis therapy is limited by the unclear mechanism of its pathogenesis. C57BL/6 mice were used to construct the pulmonary fibrosis model in this study. The results showed that Men1, which encodes menin protein, was significantly downregulated in bleomycin (BLM)-induced pulmonary fibrosis. Mice were made to overexpress or had Men1 knockdown with adeno-associated virus (AAV) infection and then induced with pulmonary fibrosis. BLM-induced pulmonary fibrosis was attenuated by Men1 overexpression and exacerbated by Men1 knockdown. Further analysis revealed the distinct roles of Men1 in fibroblasts and macrophages. Men1 inhibited fibroblast activation and extracellular matrix (ECM) protein expression while promoting macrophages to be profibrotic (M2) phenotype and enhancing their migration. Accordingly, pyroptosis was potentiated by Men1 in mouse peritoneal macrophages (PMCs) and lung tissues upon BLM stimulation. Furthermore, the expression of profibrotic factor OPN was positively regulated by menin in Raw264.7 cells and lung tissues by binding to the OPN promoter region. Taken together, although Men1 showed antifibrotic properties in BLM-induced pulmonary fibrosis mice, conflictive roles of Men1 were displayed in fibroblasts and macrophages. The profibrotic role of Men1 in macrophages may occur via the regulation of macrophage pyroptosis and OPN expression. This study extends the current pathogenic understanding of pulmonary fibrosis.


Subject(s)
Multiple Endocrine Neoplasia Type 1 , Proto-Oncogene Proteins , Pulmonary Fibrosis , Animals , Bleomycin/toxicity , Fibroblasts/metabolism , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Multiple Endocrine Neoplasia Type 1/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/metabolism
14.
J Oncol ; 2022: 3691635, 2022.
Article in English | MEDLINE | ID: mdl-35498541

ABSTRACT

Background: Ovarian cancer (OC) is the most fatal gynecologic cancer. The branched-chain α-keto acid dehydrogenase kinase (BCKDK) plays an important role in many serious human diseases, including cancers. Its function in promoting cell proliferation and migration has been reported in various cancers. However, the biological role of BCKDK and its molecular mechanisms underlying OC initiation and progression are unclear. Methods: First, the expression level of BCKDK in OC cell lines or tissues was determined using tissue microarray- (TMA-) based immunohistochemistry or western blotting. Then, growth curve analysis, anchorage-independent cell transformation assays, wound healing assays, cell migration assays, and tumor xenografts were used to test whether BCKDK could promote cell transformation or metastasis. Finally, the signaling pathways involved in this process were investigated by western blotting or immunoprecipitation. Results: We found that the expression of BCKDK was upregulated in OC tissues and the high expression of BCKDK was correlated with an advanced pathological grade in patients. The ectopic overexpression of BCKDK promoted the proliferation and migration of OC cells, and the knockdown of BCKDK with shRNAs inhibited the proliferation and migration of OC ex vivo and in vivo. Moreover, BCKDK promoted OC proliferation and migration by activating MEK. Conclusions: Our results demonstrate that BCKDK promotes OC proliferation and migration by activating the MEK/ERK signaling pathway. Targeting the BCKDK-MEK axis may provide a new therapeutic strategy for treating patients with OC.

15.
J Cancer ; 13(6): 2001-2013, 2022.
Article in English | MEDLINE | ID: mdl-35399714

ABSTRACT

With significant high incidence and death rates, liver cancer has become one of the most common cancers all over the world. Hence, novel strategies are needed for the management of this malignancy. Apoptotic related proteins Noxa and Puma are the members of BH3-only family. In this study, human Noxa or Puma coding sequences have been inserted into plasmid pcDNA 3.1 regulated by human TERT promoter. The transfection of HepG2 cells with pcTERT-Noxa or pcTET-Puma resulted in the significant suppression of cell proliferation as well as finally led to apoptosis via mitochondrial and death receptor pathways, and also exhibited significantly reduced the ability of invasion and metastasis. Moreover, an in vivo study revealed that intratumoral injections of pcTERT-Noxa or pcTERT-Puma plasmids effectively suppressed the tumor growth and can exhibit anti-neoplastic effects by recruiting CD3, CD8, CD45 positive T lymphocytes in the tumor tissues. Overall, our findings illustrated that pcTERT-Noxa and pcTERT-Puma may exhibit significant anti-tumor effects both in vivo and in vivo.

16.
Bioengineered ; 12(2): 12708-12721, 2021 12.
Article in English | MEDLINE | ID: mdl-34898368

ABSTRACT

Liver cancer is an aggressive malignancy with exhibits both high mortality and morbidity. The current treatment options are associated with several limitations, novel specific anti-cancer drugs are urgently needed to improve liver cancer treatment. In this study, a new peptide KK-64 was designed, and it showed strong cytotoxicity against liver cancer cells. To obtain the tumor targeting property, a plasmid that contains KK-64 DNA fragment and driven by human telomerase reverse transcriptase (hTERT) promoter was constructed. pcTERT-kk-64 plasmid was found to specifically inhibit the viability of liver cancer cells HepG2, induce substantial apoptosis as well as damage to the cell membranes, but had minimal effects toward normal liver HL-7702 cells. Furthermore, pcTERT-kk-64 plasmids was also noted to significantly attenuate migration and invasion of HepG2 cells. The anti-tumor effect of pcTERT-kk-64 plasmid was also observed in H22 cell-bearing mice, and it appeared to cause significant tumor regression, trigger tumor cell apoptosis, and infiltrate cytotoxicity T cells to the tumor tissues after plasmids injection. Thus, pcTERT-kk-64 plasmids showed both strong cytotoxicity and tumor selectivity in vitro and in tumor-bearing mice in liver cancer models.


Subject(s)
Cell Membrane/pathology , Genetic Therapy , Liver Neoplasms/therapy , Peptides/therapeutic use , Promoter Regions, Genetic , T-Lymphocytes/immunology , Telomerase/genetics , Animals , Apoptosis , Cell Death , Cell Line, Tumor , Cell Membrane/metabolism , Cell Movement/genetics , Cell Proliferation , Humans , Male , Mice, Inbred BALB C , Neoplasm Invasiveness , Peptides/chemistry , Plasmids/metabolism , Protein Structure, Secondary
17.
Spectrochim Acta A Mol Biomol Spectrosc ; 262: 120131, 2021 Dec 05.
Article in English | MEDLINE | ID: mdl-34256239

ABSTRACT

Two novel fluorescent probes based on 7-hydroxy-4-methyl-coumarin, FAA-MC-OH (2-fluoro-4-nitro-phenylacetyl hydroxyl coumarin) and FBA-MC-OH (2-fluoro-4-nitro-benzoyl hydroxyl coumarin) are first synthesized, and spectral studies confirm that both the probes display highly selective and sensitive to H2O2, especially FBA-MC-OH has a shorter response time. Moreover, it is worth noting that the reaction mechanism is based on bi-nucleophilic substitution instead of oxidation or hydrolysis, which is different from previous reported probes'.


Subject(s)
Hydrogen Peroxide , Hydroxyl Radical , Fluorescent Dyes , Oxidation-Reduction
18.
Anal Chim Acta ; 1171: 338645, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34112438

ABSTRACT

Rapid and low-cost diagnosis of multiple infectious diseases is of great significance especially in densely populated or resource-constrained settings. Herein, we developed a one-step fast and label-free imaging array for multiplexed detection of trace avian influenza virus (AIV) DNA biomarkers. By designing a series of specific and efficient catalytic hairpin assembly (CHA) amplification reactions and utilizing thioflavin T, a specific G-quadruplex fluorescence probe, three subtypes of AIV DNA biomarkers (H1N1, H7N9 and H5N1) were simultaneously and quickly detected within only 20 min, which just needed a small reagent volume of 50 µL and a smartphone instead of a spectrometer. With the combination of fluorescence imaging output and grey-level analysis, the array sensor can be on-site with the limit of detection of 136 pM, 141 pM and 129 pM for H1N1, H7N9 and H5N1, respectively. The imaging array also displayed good mismatch discrimination, excellent anti-interference, and real sample application. In view of its advantages of fast detection, low cost and multiplexed analysis, the imaging array is expected to have potential applications for early infectious disease diagnosis in resource-constrained settings.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A Virus, H5N1 Subtype , Influenza A Virus, H7N9 Subtype , Influenza in Birds , Influenza, Human , Animals , Influenza in Birds/diagnosis
19.
J Hum Genet ; 66(12): 1153-1158, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34140613

ABSTRACT

Hereditary spherocytosis (HS) with hemolysis, splenomegaly, and jaundice as the main clinical symptoms varied in different population and SPTB mutated rate is common except for ANK1 in the Chinese population, whereas only a few studies have been reported. Here, 11 Chinese pediatric patients with newly SPTB mutations detected by targeted next generation sequencing technology were included and analyzed in our study. The characteristics of mutation separation were verified among family members by bidirectional Sanger sequencing. The detected 11 mutations were novel, all of which were heterozygotes, including five de novo mutations, five maternal mutations, and one paternal mutation. Meanwhile, the 11 different novel mutation sites distributed on and near the seven exons included four pathogenic sites and seven likely pathogenic sites. The detection of 11 novel mutation sites gene expanded the mutant spectrum of the SPTB gene, and provided corresponding clinical data, which laid a foundation for the subsequent studies on HS in Chinese population, especially in pediatric patients.


Subject(s)
Genetic Association Studies , Genetic Predisposition to Disease , Mutation , Spectrin/genetics , Spherocytosis, Hereditary/diagnosis , Spherocytosis, Hereditary/genetics , Alleles , DNA Mutational Analysis , Genetic Association Studies/methods , Genotype , High-Throughput Nucleotide Sequencing , Humans , Phenotype
20.
ACS Appl Bio Mater ; 4(9): 7280-7289, 2021 09 20.
Article in English | MEDLINE | ID: mdl-35006957

ABSTRACT

A transferrin receptor (TfR)-targeted nanodrug [green fluorescence emission carbon dot (GCD)-polyethylene glycol (PEG)-transferrin (Tf)@doxorubicin (Dox)] for cancer therapy was developed by functionalizing GCDs with PEG, Tf, and Dox. GCDs were synthesized by the one-step hydrothermal method, followed by conjugating PEG and Tf by covalent bonds and loading Dox by electrostatic interactions. The nanodrug exhibits high stability under neutral conditions and effectively releases Dox at pH of 5.5. GCD-PEG-Tf@Dox can be selectively internalized by TfR-overexpressed tumor cells (MCF-7 and K150) via receptor-mediated endocytosis and further release Dox to the nuclei. As a result, GCD-PEG-Tf@Dox exhibits significant lethality to tumor cells (MCF-7 and K150) but greatly reduced toxicity to normal cells [Chinese hamster ovary cell line (CHO)] compared with free Dox. In vivo studies have confirmed that GCD-PEG-Tf@Dox can effectively inhibit tumor proliferation with negligible side effects.


Subject(s)
Neoplasms , Transferrin , Animals , CHO Cells , Carbon/metabolism , Cell Line, Tumor , Cricetinae , Cricetulus , Doxorubicin/pharmacology , Drug Delivery Systems/methods , Neoplasms/drug therapy , Polyethylene Glycols/chemistry , Transferrin/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...