Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 120
Filter
1.
CNS Neurosci Ther ; 30(6): e14800, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38887162

ABSTRACT

BACKGROUND: Impaired mitochondrial dynamics have been identified as a significant contributing factor to reduced neurogenesis under pathological conditions. However, the relationship among mitochondrial dynamics, neurogenesis, and spatial memory during normal development remains unclear. This study aims to elucidate the role of mitophagy in spatial memory mediated by neurogenesis during development. METHODS: Adolescent and adult male mice were used to assess spatial memory performance. Immunofluorescence staining was employed to evaluate levels of neurogenesis, and mitochondrial dynamics were assessed through western blotting and transmission electron microscopy. Pharmacological interventions further validated the causal relationship among mitophagy, neurogenesis, and behavioral performance during development. RESULTS: The study revealed differences in spatial memory between adolescent and adult mice. Diminished neurogenesis, accompanied by reduced mitophagy, was observed in the hippocampus of adult mice compared to adolescent subjects. Pharmacological induction of mitophagy in adult mice with UMI-77 resulted in enhanced neurogenesis and prolonged spatial memory retention. Conversely, inhibition of mitophagy with Mdivi-1 in adolescent mice led to reduced hippocampal neurogenesis and impaired spatial memory. CONCLUSION: The observed decline in spatial memory in adult mice is associated with decreased mitophagy, which affects neurogenesis in the dentate gyrus. This underscores the therapeutic potential of enhancing mitophagy to counteract age- or disease-related cognitive decline.


Subject(s)
Hippocampus , Mitophagy , Neurogenesis , Spatial Memory , Animals , Neurogenesis/physiology , Neurogenesis/drug effects , Mitophagy/physiology , Mitophagy/drug effects , Spatial Memory/physiology , Male , Mice , Mice, Inbred C57BL , Mitochondrial Dynamics/physiology , Quinazolinones
2.
Front Immunol ; 15: 1397338, 2024.
Article in English | MEDLINE | ID: mdl-38774865

ABSTRACT

Objectives: This manuscript undertakes a systematic examination of the research landscape concerning global Cryptococcus species and their dynamism with the host immune system spanning the past decade. It furnishes a detailed survey of leading knowledge institutions and critical focal points in this area, utilizing bibliometric analysis. Methods: VOSviewer and CiteSpace software platforms were employed to systematically analyze and graphically depict the relevant literature indexed in the WoSCC database over the preceding ten years. Results: In the interval between October 1, 2013, and October 1, 2023, a corpus of 795 publications was amassed. The primary research institutions involved in this study include Duke University, the University of Minnesota, and the University of Sydney. The leading trio of nations, in terms of publication volume, comprises the United States, China, and Brazil. Among the most prolific authors are Casadevall, Arturo; Wormley, Floyd L., Jr.; and Olszewski, Michal A., with the most highly cited author being Perfect, Jr. The most esteemed journal is Mbio, while Infection and Immunity commands the highest citation frequency, and the Journal of Clinical Microbiology boasts the most significant impact factor. Present research foci encompass the intricate interactions between Cryptococcus pathogenesis and host immunity, alongside immune mechanisms, complications, and immunotherapies. Conclusion: This represents the first exhaustive scholarly review and bibliometric scrutiny of the evolving landscapes in Cryptococcus research and its interactions with the host immune system. The analyses delineated herein provide insights into prevailing research foci and trajectories, thus furnishing critical directions for subsequent inquiries in this domain.


Subject(s)
Bibliometrics , Cryptococcosis , Cryptococcus , Animals , Humans , Cryptococcosis/immunology , Cryptococcus/immunology , Host-Pathogen Interactions/immunology , Immune System/immunology
3.
Nutrients ; 16(10)2024 May 13.
Article in English | MEDLINE | ID: mdl-38794702

ABSTRACT

Insulin secretion from pancreatic ß cells is a key pillar of glucose homeostasis, which is impaired under obesity and aging. Growth hormone secretagogue receptor (GHSR) is the receptor of nutrient-sensing hormone ghrelin. Previously, we showed that ß-cell GHSR regulated glucose-stimulated insulin secretion (GSIS) in young mice. In the current study, we further investigated the effects of GHSR on insulin secretion in male mice under diet-induced obesity (DIO) and streptozotocin (STZ)-induced ß-cell injury in aging. ß-cell-specific-Ghsr-deficient (Ghsr-ßKO) mice exhibited no glycemic phenotype under DIO but showed significantly improved ex vivo GSIS in aging. We also detected reduced insulin sensitivity and impaired insulin secretion during aging both in vivo and ex vivo. Accordingly, there were age-related alterations in expression of glucose transporter, insulin signaling pathway, and inflammatory genes. To further determine whether GHSR deficiency affected ß-cell susceptibility to acute injury, young, middle-aged, and old Ghsr-ßKO mice were subjected to STZ. We found that middle-aged and old Ghsr-ßKO mice were protected from STZ-induced hyperglycemia and impaired insulin secretion, correlated with increased expression of insulin signaling regulators but decreased pro-inflammatory cytokines in pancreatic islets. Collectively, our findings indicate that ß-cell GHSR has a major impact on insulin secretion in aging but not obesity, and GHSR deficiency protects against STZ-induced ß-cell injury in aging.


Subject(s)
Aging , Insulin-Secreting Cells , Insulin , Mice, Knockout , Obesity , Receptors, Ghrelin , Streptozocin , Animals , Male , Insulin-Secreting Cells/metabolism , Receptors, Ghrelin/metabolism , Receptors, Ghrelin/genetics , Obesity/metabolism , Mice , Insulin/metabolism , Insulin Secretion , Signal Transduction , Mice, Inbred C57BL , Insulin Resistance , Blood Glucose/metabolism , Hyperglycemia , Diabetes Mellitus, Experimental
4.
J Inflamm Res ; 17: 3397-3406, 2024.
Article in English | MEDLINE | ID: mdl-38813541

ABSTRACT

Background: Effective biomarkers are needed to predict the efficacy of immune checkpoint inhibitors (ICIs) therapy in hepatocellular carcinoma (HCC). We evaluated the early changes in serum interleukin-8 (IL-8) levels as a biomarker of response to ICIs in patients with unresectable HCC. Methods: Eighty patients who received ICIs therapy alone or in combination with other treatments for unresectable HCC were included. Serum was collected at baseline and 2-4 weeks after the first dose. Serum IL-8 levels were measured using by ELISA. Results: In the progressive disease (PD) group, serum IL-8 levels increased significantly before the second dose of ICIs therapy compared with baseline levels (P < 0.001). Early changes in serum IL-8 levels were significantly associated with the response to ICIs therapy (P < 0.001). A cutoff value of 8.1% increase over the baseline most effectively predicted the response to ICIs. Increases in serum IL-8 levels > 8.1% indicated the uselessness of ICIs immunotherapy in patients with unresectable HCC. Patients with increases in serum IL-8 levels > 8.1% had significantly shorter overall survival (OS) and progression-free survival (PFS) than those with increases in serum IL-8 levels ≤ 8.1% (P < 0.001). Increases in serum IL-8 levels > 8.1% were independent prognosticators of worse OS (P = 0.003) and PFS (P < 0.001). Conclusion: Early changes in serum IL-8 levels, measured only 2-4 weeks after starting therapy, could predict the response to ICIs therapy, as well as OS and PFS of patients with unresectable HCC. Increases in serum IL-8 levels > 8.1% indicated the uselessness of ICIs immunotherapy and predicted worse OS and PFS.

5.
Nat Commun ; 15(1): 4237, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762492

ABSTRACT

Immune checkpoint inhibition targeting the PD-1/PD-L1 pathway has become a powerful clinical strategy for treating cancer, but its efficacy is complicated by various resistance mechanisms. One of the reasons for the resistance is the internalization and recycling of PD-L1 itself upon antibody binding. The inhibition of lysosome-mediated degradation of PD-L1 is critical for preserving the amount of PD-L1 recycling back to the cell membrane. In this study, we find that Hsc70 promotes PD-L1 degradation through the endosome-lysosome pathway and reduces PD-L1 recycling to the cell membrane. This effect is dependent on Hsc70-PD-L1 binding which inhibits the CMTM6-PD-L1 interaction. We further identify an Hsp90α/ß inhibitor, AUY-922, which induces Hsc70 expression and PD-L1 lysosomal degradation. Either Hsc70 overexpression or AUY-922 treatment can reduce PD-L1 expression, inhibit tumor growth and promote anti-tumor immunity in female mice; AUY-922 can further enhance the anti-tumor efficacy of anti-PD-L1 and anti-CTLA4 treatment. Our study elucidates a molecular mechanism of Hsc70-mediated PD-L1 lysosomal degradation and provides a target and therapeutic strategies for tumor immunotherapy.


Subject(s)
B7-H1 Antigen , HSC70 Heat-Shock Proteins , Lysosomes , HSC70 Heat-Shock Proteins/metabolism , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , Lysosomes/metabolism , Animals , Mice , Humans , Female , Cell Line, Tumor , Proteolysis , Endosomes/metabolism , Neoplasms/immunology , Neoplasms/metabolism , HSP90 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Mice, Inbred C57BL , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , CTLA-4 Antigen/metabolism , CTLA-4 Antigen/antagonists & inhibitors , CTLA-4 Antigen/immunology , Cell Membrane/metabolism , Myelin Proteins , MARVEL Domain-Containing Proteins
6.
Chem Biol Interact ; 394: 110990, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38579922

ABSTRACT

Swainsonine (SW) is the main toxic component of locoweed. Previous studies have shown that kidney damage is an early pathologic change in locoweed poisoning in animals. Trehalose induces autophagy and alleviates lysosomal damage, while its protective effect and mechanism against the toxic injury induced by SW is not clear. Based on the published literature, we hypothesize that transcription factor EB(TFEB) -regulated is targeted by SW and activating TFEB by trehalose would reverse the toxic effects. In this study, we investigate the mechanism of protective effects of trehalose using renal tubular epithelial cells. The results showed that SW induced an increase in the expression level of microtubule-associated protein light chain 3-II and p62 proteins and a decrease in the expression level of ATPase H+ transporting V1 Subunit A, Cathepsin B, Cathepsin D, lysosome-associated membrane protein 2 and TFEB proteins in renal tubular epithelial cells in a time and dose-dependent manner suggesting TFEB-regulated lysosomal pathway is adversely affected by SW. Conversely, treatment with trehalose, a known activator of TFEB promote TFEB nuclear translocation suggesting that TFEB plays an important role in protection against SW toxicity. We demonstrated in lysosome staining that SW reduced the number of lysosomes and increased the luminal pH, while trehalose could counteract these SW-induced effects. In summary, our results demonstrated for the first time that trehalose could alleviate the autophagy degradation disorder and lysosomal damage induced by SW. Our results provide an interesting method for reversion of SW-induced toxicity in farm animals and furthermore, activation of TFEB by trehalose suggesting novel mechanism of treating lysosomal storage diseases.


Subject(s)
Autophagy , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Epithelial Cells , Kidney Tubules , Lysosomes , Swainsonine , Trehalose , Animals , Autophagy/drug effects , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Cell Line , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Kidney Tubules/drug effects , Kidney Tubules/pathology , Kidney Tubules/metabolism , Kidney Tubules/cytology , Lysosomes/metabolism , Lysosomes/drug effects , Swainsonine/toxicity , Trehalose/pharmacology
7.
J Asian Nat Prod Res ; 26(5): 555-561, 2024 May.
Article in English | MEDLINE | ID: mdl-38563409

ABSTRACT

A newly discovered trihydroxynaphthalenone derivative, epoxynaphthalenone (1) involving the condensation of ortho-hydroxyl groups into an epoxy structure, and a novel pyrone metabolite characterized as pyroneaceacid (2), were extracted from Talaromyces purpurpgenus, an endophytic fungus residing in Rhododendron molle. The structures of these compounds were elucidated through a comprehensive analysis of their NMR and HRESIMS data. The determination of absolute configurations was accomplished using electronic circular dichroism (ECD) calculations and CD spectra. Notably, these recently identified metabolites exhibited a moderate inhibitory activity against xanthine oxidase (XOD).


Subject(s)
Pyrones , Talaromyces , Xanthine Oxidase , Talaromyces/chemistry , Molecular Structure , Pyrones/chemistry , Pyrones/pharmacology , Pyrones/isolation & purification , Xanthine Oxidase/antagonists & inhibitors , Nuclear Magnetic Resonance, Biomolecular , Naphthalenes/chemistry , Naphthalenes/isolation & purification , Naphthalenes/pharmacology , Circular Dichroism
8.
Nat Commun ; 15(1): 2137, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38459019

ABSTRACT

Translational control is crucial for protein production in various biological contexts. Here, we use Ribo-seq and RNA-seq to show that genes related to oxidative phosphorylation are translationally downregulated during heart regeneration. We find that Nat10 regulates the expression of Uqcr11 and Uqcrb mRNAs in mouse and human cardiomyocytes. In mice, overexpression of Nat10 in cardiomyocytes promotes cardiac regeneration and improves cardiac function after injury. Conversely, treating neonatal mice with Remodelin-a Nat10 pharmacological inhibitor-or genetically removing Nat10 from their cardiomyocytes both inhibit heart regeneration. Mechanistically, Nat10 suppresses the expression of Uqcr11 and Uqcrb independently of its ac4C enzyme activity. This suppression weakens mitochondrial respiration and enhances the glycolytic capacity of the cardiomyocytes, leading to metabolic reprogramming. We also observe that the expression of Nat10 is downregulated in the cardiomyocytes of P7 male pig hearts compared to P1 controls. The levels of Nat10 are also lower in female human failing hearts than non-failing hearts. We further identify the specific binding regions of Nat10, and validate the pro-proliferative effects of Nat10 in cardiomyocytes derived from human embryonic stem cells. Our findings indicate that Nat10 is an epigenetic regulator during heart regeneration and could potentially become a clinical target.


Subject(s)
Myocytes, Cardiac , Protein Processing, Post-Translational , Animals , Female , Humans , Male , Mice , Acetyltransferases/metabolism , Myocytes, Cardiac/metabolism , N-Terminal Acetyltransferases/metabolism , RNA, Messenger/metabolism , Swine
9.
Brain Behav ; 14(1): e3355, 2024 01.
Article in English | MEDLINE | ID: mdl-38376047

ABSTRACT

OBJECTIVE: The objective of this study was to investigate the relationship between lipoprotein (a) (Lp(a)), triglyceride/high-density lipoprotein cholesterol (TG/HDL-C), and the stability of carotid atherosclerotic plaque in patients with acute ischemic stroke. METHODS: A total of 142 patients with acute ischemic stroke were selected and divided into group A (59 cases of stable plaque formation) and group B (83 cases of unstable plaque formation) according to the characteristics of carotid artery plaque formation detected by carotid color Doppler ultrasound. The serum Lp(a), lipid metabolism indexes, peripheral blood routine indexes, and related serum inflammatory factors indexes were compared between the two groups. Receiver operating characteristic curve and multivariate logistic regression model were used to analyze the relationship between each index and the formation of carotid unstable plaque. RESULTS: There were no significant differences in serum total cholesterol (TC), HDL-C, and low-density lipoprotein cholesterol (LDL-C) between groups A and B (p > .05). The values of Lp(a), TG, and TG/HDL-C in group B were higher than those in group A, and the differences were statistically significant (p < .05). There were no significant differences in serum TC, HDL-C, and LDL-C between groups A and B (p > .05). The values of Lp(a), TG, and TG/HDL-C in group B were higher than those in group A, and the differences were statistically significant (p < .05). The values of HBA1C, Lp-PLA2, CRP, CysC, Hcy, TNF-α, neutrophils, and NLR in group B were higher than those in group A, and the differences were statistically significant (p < .05). There was no significant difference in FPG, systolic blood pressure, diastolic blood pressure, Hb, white blood cells, platelets, and lymphocytes between groups A and B (p > .05). The results of logistic regression model showed that the increase of Lp(a), TG/HDL-C, HBA1C, Lp-PLA2, CRP, CysC, Hcy, and NLR could increase the risk of carotid artery unstable plaque in patients with ischemic stroke (p < .05). CONCLUSION: Lp(a) and TG/HDL-C have certain value in evaluating the stability of carotid atherosclerotic plaque in patients with acute ischemic stroke, and the increased levels of LP (a) and TG/HDL-C will significantly increase the risk of carotid unstable plaque in patients.


Subject(s)
Carotid Stenosis , Ischemic Stroke , Plaque, Atherosclerotic , Humans , Plaque, Atherosclerotic/diagnostic imaging , Ischemic Stroke/diagnostic imaging , 1-Alkyl-2-acetylglycerophosphocholine Esterase , Cholesterol, LDL , Glycated Hemoglobin , Carotid Arteries , Triglycerides , Carotid Stenosis/diagnostic imaging , Lipoprotein(a) , Risk Factors
10.
Int J Biol Sci ; 20(4): 1279-1296, 2024.
Article in English | MEDLINE | ID: mdl-38385070

ABSTRACT

Background: High levels of COP9 signalosome subunit 5 (CSN5) in epithelial ovarian cancer (EOC) are associated with poor prognosis and are implicated in mediating platinum resistance in EOC cells. The underlying mechanisms, however, remained undefined. This study aimed to elucidate the molecular process and identify potential therapeutic targets. Methods: RNA-sequencing was used to investigate differentially expressed genes between platinum-resistant EOC cells with CSN5 knockdown and controls. O-GlcNAc proteomics were employed to identify critical modulators downstream of CSN5. The omics findings were confirmed through qRT-PCR and immunoblotting. In vitro and in vivo experiments assessed the sensitivity of resistant EOCs to platinum. Results: We demonstrated an involvement of aberrant O-GlcNAc and endoplasmic reticulum (ER) stress disequilibrium in CSN5-mediated platinum resistance of EOC. Genetic or pharmacologic inhibition of CSN5 led to tumor regression and surmounted the intrinsic EOC resistance to platinum both in vitro and in vivo. Integration of RNA-sequencing and O-GlcNAc proteomics pinpointed calreticulin (CRT) as a potential target of aberrant O-GlcNAc modification. CSN5 upregulated O-GlcNAc-CRT at T346 to inhibit ER stress-induced cell death. Blocking T346 O-GlcNAc-CRT through CSN5 deficiency or T346A mutation resulted in Ca2+ disturbances, followed by ER stress overactivation, mitochondrial dysfunction, and ultimately cell apoptosis. Conclusion: This study reveals that CSN5-mediated aberrant O-GlcNAc-CRT acts as a crucial ER stress checkpoint, governing cell fate response to stress, and emphasizes an unrecognized role for the CSN5/CRT O-GlcNAc/ER stress axis in platinum resistance of EOC.


Subject(s)
Ovarian Neoplasms , Platinum , Humans , Female , Carcinoma, Ovarian Epithelial/drug therapy , Carcinoma, Ovarian Epithelial/genetics , Platinum/therapeutic use , Calreticulin/metabolism , Calreticulin/therapeutic use , Cell Line, Tumor , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , RNA
11.
Eur J Pharmacol ; 963: 176245, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38052413

ABSTRACT

Mammalian heart is capable to regenerate almost completely early after birth through endogenous cardiomyocyte proliferation. However, this regenerative capacity diminishes gradually with growth and is nearly lost in adulthood. Cannabidiol (CBD) is a major component of cannabis and has various biological activities to regulate oxidative stress, fibrosis, inflammation, and cell death. The present study was conducted to investigate the pharmacological effects of CBD on heart regeneration in post-MI mice. MI models in adult mice were constructed via coronary artery ligation, which were administrated with or without CBD. Our results demonstrate that systemic administration (10 mg/kg) of CBD markedly increased cardiac regenerative ability, reduced infarct size, and restored cardiac function in MI mice. Consistently, in vitro study also showed that CBD was able to promote the proliferation of neonatal cardiomyocytes. Mechanistically, the expression of miR-143-3p related to cardiomyocyte proliferation was significantly down-regulated in CBD-treated cardiomyocytes, while the overexpression of miR-143-3p inhibited cardiomyocyte mitosis and eliminated CBD-induced cardiomyocyte proliferation. Moreover, CBD enhanced the expression of Yap and Ctnnd1, which were demonstrated as the target genes of miR-143-3p. Silencing of Yap and Ctnnd1 hindered the proliferative effects of CBD. We further revealed that inhibition of the cannabinoid receptor 2 impeded the regulatory effect of CBD on miR-143-3p and its downstream target Yap/Ctnnd1, which ultimately eliminated the pro-proliferative effect of CBD on neonatal and adult cardiomyocytes. Taken together, CBD promotes cardiomyocyte proliferation and heart regeneration after MI via miR-143-3p/Yap/Ctnnd1 signaling pathway, which provides a new strategy for cardiac repair in adult myocardium.


Subject(s)
Cannabidiol , MicroRNAs , Myocardial Infarction , Animals , Mice , Myocytes, Cardiac , Cannabidiol/pharmacology , Cannabidiol/therapeutic use , Myocardial Infarction/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Proliferation , Regeneration/physiology , Mammals/genetics
12.
Plant Physiol ; 194(3): 1545-1562, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38039100

ABSTRACT

Brassinosteroids (BRs) are a group of steroid hormones that play crucial roles in plant growth and development. Atypical bHLH transcription factors that lack the basic region for DNA binding have been implicated in BR signaling. However, the underlying mechanisms of atypical bHLHs in regulation of rice (Oryza sativa) BR signaling are still largely unknown. Here, we describe a systematic characterization of INCREASED LEAF INCLINATION (ILI) subfamily atypical bHLH transcription factors in rice. A total of 8 members, ILI1 to ILI8, with substantial sequence similarity were retrieved. Knockout and overexpression analyses demonstrated that these ILIs play unequally redundant and indispensable roles in BR-mediated growth and development in rice, with a more prominent role for ILI4 and ILI5. The ili3/4/5/8 quadruple and ili1/3/4/7/8 quintuple mutants displayed tremendous BR-related defects with severe dwarfism, erect leaves, and sterility. Biochemical analysis showed that ILIs interact with OsbHLH157 and OsbHLH158, which are also atypical bHLHs and have no obvious transcriptional activity. Overexpression of OsbHLH157 and OsbHLH158 led to drastic BR-defective growth, whereas the osbhlh157 osbhlh158 double mutant developed a typical BR-enhanced phenotype, indicating that OsbHLH157 and OsbHLH158 play a major negative role in rice BR signaling. Further transcriptome analyses revealed opposite effects of ILIs and OsbHLH157/OsbHLH158 in regulation of downstream gene expression, supporting the antagonism of ILIs and OsbHLH157/OsbHLH158 in maintaining the balance of BR signaling. Our results provide insights into the mechanism of BR signaling and plant architecture formation in rice.


Subject(s)
Oryza , Oryza/genetics , Brassinosteroids , Signal Transduction , Basic Helix-Loop-Helix Transcription Factors/genetics , Gene Expression Profiling
13.
Ann Vasc Surg ; 98: 355-364, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37852365

ABSTRACT

BACKGROUND: Macrophages play an important role in maintaining the chronic inflammatory of atherosclerosis (AS) and are hallmark of atherosclerotic plaques. They differentiate into different subpopulations under the influence of oxidized lipids and cytokines and play different roles in the formation and development of plaque. To explore the differences in the amount and distribution of different macrophage subpopulations around different carotid plaque pathological features in human AS, and based on these results, to explore the correlation between some macrophage subpopulations and AS pathological features. METHODS: First, we analyzed the single cells RNA-sequence data from the Gene Expression Omnibus DataSets (GSE159677). Second, we investigated the distribution difference of macrophage subpopulations in 61 surgically resected AS plaques by markers staining include CD68, inducible nitric oxide synthase, Arg-1, CD163 and HO-1. RESULTS: The result of single cells RNA-Sequence analysis showed that there were a large number of macrophages infiltrated in AS and they can be categorized into different subpopulations with different transcriptional features and functions; moreover in different part of AS (calcified AS core versus proximal adjacent), the total number and subpopulation ratios were all different. The result of staining analysis showed that macrophages mainly distributed in some pathological lesions such as necrosis, fibrous tissue degeneration, cholesterol crystallization etc., and different subpopulations were distributed differently in these lesions. CONCLUSIONS: This study confirmed that macrophages were heavily infiltrated in atherosclerotic plaques, and there existed subtype variability in different pathological lesions; meanwhile, these results suggested that different macrophage subpopulations may contribute differently in different pathological lesions.


Subject(s)
Atherosclerosis , Plaque, Atherosclerotic , Humans , Treatment Outcome , Carotid Arteries/pathology , Macrophages/metabolism , Atherosclerosis/pathology , RNA/metabolism
14.
Heliyon ; 9(12): e23191, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38149191

ABSTRACT

Background: Coronary artery calcification (CAC), a surrogate of atherosclerosis, is related to stent underexpansion and adverse cardiac events. However, the effect of CAC on plaque stability is still controversial and the morphological significance of CAC has yet to be elucidated. Methods: A retrospective series of 419 patients with acute coronary syndrome (ACS) who underwent optical coherence tomography (OCT) were enrolled. Patients were classified into three groups based on the calcification size in culprit plaques and the features of the culprit and non-culprit plaques among these groups were compared. Logistic regression was used to analyze independent risk factors for culprit plaque rupture and the nonlinear relationship between calcification parameters and culprit plaque rupture. Furthermore, we compared the detailed calcification parameters of different kinds of plaques. Results: A total of 419 culprit plaques and 364 non-culprit plaques were identified. The incidence of calcification was 53.9 % in culprit plaques and 50.3 % in non-culprit plaques. Compared with culprit plaques without calcification, plaque rupture, macrophages and cholesterol crystals were more frequently observed in the spotty calcification group, and the lipid length was longer; the incidence of macrophages and cholesterol crystals was higher in the macrocalcification group. Calcification tended to be smaller in ruptured plaques than in non-ruptured plaques. Moreover, the arc and length of calcification were greater in culprit plaques than in non-culprit plaques. Conclusions: Vulnerable features were more frequently observed in culprit plaques with spotty calcification, whereas the presence of macrocalcification calcifications did not significantly increase plaque vulnerability. Calcification tends to be larger in culprit plaques than in non-culprit plaques.

15.
Crit Rev Food Sci Nutr ; : 1-20, 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37942962

ABSTRACT

Microbial biofilm is undoubtedly a challenging problem in the food industry. It is closely associated with human health and life, being difficult to remove and antibiotic resistance. Therefore, an alternate method to solve these problems is needed. Nitric oxide (NO) as an antimicrobial agent, has shown great potential to disrupt biofilms. However, the extremely short half-life of NO in vivo (2 s) has facilitated the development of relatively more stable NO donors. Recent studies reported that NO could permeate biofilms, causing damage to cellular biomacromolecules, inducing biofilm dispersion by quorum sensing (QS) pathway and reducing intracellular bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) levels, and significantly improving the bactericidal effect without drug resistance. In this review, biofilm hazards and formation processes are presented, and the characteristics and inhibitory effects of NO donors are carefully discussed, with an emphasis on the possible mechanisms of NO resistance to biofilms and some advanced approaches concerning the remediation of NO donor deficiencies. Moreover, the future perspectives, challenges, and limitations of NO donors were summarized comprehensively. On the whole, this review aims to provide the application prospects of NO and its donors in the food industry and to make reliable choices based on these available research results.

16.
Nat Plants ; 9(11): 1902-1914, 2023 11.
Article in English | MEDLINE | ID: mdl-37798338

ABSTRACT

Plant nitrogen (N)-use efficiency (NUE) is largely determined by the ability of root to take up external N sources, whose availability and distribution in turn trigger the modification of root system architecture (RSA) for N foraging. Therefore, improving N-responsive reshaping of RSA for optimal N absorption is a major target for developing crops with high NUE. In this study, we identified RNR10 (REGULATOR OF N-RESPONSIVE RSA ON CHROMOSOME 10) as the causal gene that underlies the significantly different root developmental plasticity in response to changes in N level exhibited by the indica (Xian) and japonica (Geng) subspecies of rice. RNR10 encodes an F-box protein that interacts with a negative regulator of auxin biosynthesis, DNR1 (DULL NITROGEN RESPONSE1). Interestingly, RNR10 monoubiquitinates DNR1 and inhibits its degradation, thus antagonizing auxin accumulation, which results in reduced root responsivity to N and nitrate (NO3-) uptake. Therefore, modulating the RNR10-DNR1-auxin module provides a novel strategy for coordinating a desirable RSA and enhanced N acquisition for future sustainable agriculture.


Subject(s)
Oryza , Oryza/genetics , Oryza/metabolism , Nitrogen/metabolism , Nitrates/metabolism , Crops, Agricultural/metabolism , Indoleacetic Acids/metabolism
17.
Int J Mol Sci ; 24(20)2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37894822

ABSTRACT

Chemotherapy is commonly used clinically to treat colorectal cancer, but it is usually prone to drug resistance, so novel drugs need to be developed continuously to treat colorectal cancer. Neocryptolepine derivatives have attracted a lot of attention because of their good cytotoxic activity; however, cytotoxicity studies on colorectal cancer cells are scarce. In this study, the cytotoxicity of 8-methoxy-2,5-dimethyl-5H-indolo[2,3-b] quinoline (MMNC) in colorectal cells was evaluated. The results showed that MMNC inhibits the proliferation of HCT116 and Caco-2 cells, blocks the cell cycle in the G2/M phase, decreases the cell mitochondrial membrane potential and induces apoptosis. In addition, the results of western blot experiments suggest that MMNC exerts cytotoxicity by inhibiting the expression of PI3K/AKT/mTOR signaling pathway-related proteins. Based on these results, MMNC is a promising lead compound for anticancer activity in the treatment of human colorectal cancer.


Subject(s)
Antineoplastic Agents , Colorectal Neoplasms , Quinolines , Humans , Antineoplastic Agents/pharmacology , Apoptosis , Caco-2 Cells , Cell Line, Tumor , Cell Proliferation , Colorectal Neoplasms/pathology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Quinolines/pharmacology , Signal Transduction , TOR Serine-Threonine Kinases/metabolism
18.
Emerg Microbes Infect ; 12(2): 2251600, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37606967

ABSTRACT

Pigeon paramyxovirus 1 (PPMV-1) is an antigenic host variant of avian paramyxovirus 1. Sporadic outbreaks of PPMV-1 infection have occurred in pigeons in China; however, few cases of human PPMV-1 infection have been reported. The purpose of this article is to report a case of severe human PPMV-1 infection in an individual with probable post-COVID-19 syndrome (long COVID) who presented with rapidly progressing pulmonary infection. The patient was a 66-year-old man who was admitted to the intensive care unit 11 days after onset of pneumonia and recovered 64 days after onset. PPMV-1 was isolated from the patient's sputum and in cloacal smear samples from domesticated pigeons belonging to the patient's neighbour. Residual severe acute respiratory syndrome coronavirus 2 was detected in respiratory and anal swab samples from the patient. Sequencing analyses revealed that the PPMV-1 genome belonged to genotype VI.2.1.1.2.2 and had the 112RRQKRF117 motif in the cleavage site of the fusion protein, which is indicative of high virulence. This case of cross-species transmission of PPMV-1 from a pigeon to a human highlights the risk of severe PPMV-1 infection in immunocompromised patients, especially those with long COVID. Enhanced surveillance for increased risk of severe viral infection is warranted in this population.


Subject(s)
COVID-19 , Male , Animals , Humans , Aged , Columbidae , Newcastle disease virus/genetics , Post-Acute COVID-19 Syndrome , Antigenic Variation
19.
Animals (Basel) ; 13(16)2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37627437

ABSTRACT

Swainsonine-containing plants contain swainsonine which has been shown to cause neurological signs and pathological changes in farm animals. It causes a large number of livestock poisonings every year resulting in economic losses to the livestock industry. At present, "Jifang E" is used in the prevention of swainsonine-containing plants poisoning livestock, and the preventive effects have been well-documented. However, "Jifang E" is typically administered in drinking water, making it difficult to control the administered dosage, because of feeding difficulties and it may cause certain side effects that are unique to the water-dissolved powder. To overcome these difficulties, we developed a temperature-sensitive gel for injection and the optimal ratio of each formula of sustained-release injection is P407 (24%), P188 (6%), Vitamin C (1%), PEG4000 (0.5%), and "Jifang E" (10%). Our results suggest that novel formulation makes the micellar system more stable and the particles are uniformly dispersed. Colloidal morphological studies showed that each group formed a homogeneous pore structure after gelling, and the structure became more dense with the addition of "Jifang E". The rheological study shows that "Jifang E" is a pseudoplastic fluid, and the addition of "Jifang E" reduces the viscosity of the formula, which is beneficial to the injection. In vitro and in vivo release rate studies have shown that the effective concentration of "Jifang E" can be maintained for 3 to 5 days. The acute toxicity test in SPF Kunming mice showed that its LD50 was 828.323 mg/kg, with confidence limits of 676.706-1013.911 mg/kg, which is a safe dosage (LD50 > 200 mg/kg). There were no observed reactions of muscle irritation or subcutaneous tissue irritation with the dosage used for New Zealand rabbits. In summary, we successfully developed the sustained-release injection formulation of "Jifang E" for the prevention of swainsonine-containing plants poisoning livestock, which provides the basis for subsequent field extension trials and the further study of its detoxification mechanism.

SELECTION OF CITATIONS
SEARCH DETAIL
...