Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Cancers (Basel) ; 15(18)2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37760480

ABSTRACT

As one of the most common malignant tumors, melanoma is a serious threat to human health. More than half of melanoma patients have a BRAF mutation, and 90% of them have a BRAF(V600E) mutation. There is a targeted therapy for patients using a BRAF(V600E) inhibitor. However, no response to treatment is generally inevitable due to the heterogeneity of melanoma. Coupled with its high metastatic character, melanoma ultimately leads to poor overall survival. This study aimed to explore the possible mechanisms of melanoma metastasis and identify a more effective method for the treatment of melanoma. In this paper, we report that TCF12 expression is higher in melanoma, especially in metastatic tumors, through analyzing data from TCGA. Then, cell proliferation, colony formation, and transwell assays show that the upregulated expression of TCF12 can promote proliferation and metastasis of melanoma cells in vitro. The same result is confirmed in the subcutaneous tumor formation assay. Moreover, TGFB2 is identified as a direct downstream target of TCF12 by RNA-seq, qPCR, immunoblotting, ChIP, and a dual luciferase reporting assay. Interestingly, depletion of TCF12 can sensitize melanoma to BRAF inhibition both in vitro and in vivo. Overall, our results demonstrate that TCF12 promotes melanoma progression and can be a potential tumor therapeutic target.

2.
Ecotoxicol Environ Saf ; 259: 115040, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37235898

ABSTRACT

Exposure to the toxic metal cadmium (Cd) is a well-established risk factor for hepatic inflammation, but it remains unclear how metabolic components, such as different fatty acids (FAs), interact with Cd to influence this process. Understanding these interactions is essential for identifying potential preventative and therapeutic targets for this disorder. To address this question, we conducted in vitro and in vivo studies to investigate the combinatorial effect of Cd and saturated FAs on hepatic inflammation. Specifically, we assessed the cytotoxicity of Cd on macrophages and their polarization and inflammatory activation upon co-exposure to Cd and saturated FAs. Our results showed that while saturated FAs had minimal impact on the cytotoxicity of Cd on macrophages, they significantly collaborated with Cd in predisposing macrophages towards a pro-inflammatory M1 polarization, thereby promoting inflammatory activation. This joint effect of Cd and saturated FAs resulted in persistent inflammation and hepatic steatohepatitis in vivo. In summary, our study identified macrophage polarization as a novel mechanism by which co-exposure to Cd and saturated lipids induces hepatic inflammation. Our findings suggest that intervening in macrophage polarization may be a potential approach for mitigating the adverse hepatic effects of Cd.


Subject(s)
Cadmium , Fatty Acids , Humans , Fatty Acids/metabolism , Cadmium/toxicity , Cadmium/metabolism , Macrophages/metabolism , Liver/metabolism , Inflammation/chemically induced , Inflammation/metabolism
3.
Ecotoxicol Environ Saf ; 233: 113306, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35183812

ABSTRACT

Exposure to cadmium (Cd), a toxic metal, is epidemiologically linked to nonalcoholic steatohepatitis (NASH) in humans. However, the role of Cd in NASH remains to be fully elucidated. This study employed a novel murine NASH model to investigate the effects of chronic low-dose Cd on hepatic pathology and its underlying mechanisms. NASH is characterized by lipid accumulation, extensive cell death, and persistent inflammation in the liver. We found that treatment with Cd in drinking water (10 mg/L) for 6 or 12 weeks significantly boosted hepatic fat deposition, increased hepatocyte destruction, and amplified inflammatory responses in mice, confirming that low-dose Cd can facilitate NASH development in vivo. Mechanistically, chronic Cd exposure reshaped the hepatic transcriptional landscape, with PPAR-mediated fatty acid metabolic pathways being the most significantly altered. In particular, Cd repressed fatty acid desaturation, leading to the accumulation of saturated fatty acids whose lipotoxicity exacerbated cell death and, consequently, inflammatory activation. In summary, we validated the causal effects of chronic low-dose Cd on NASH in vivo and identified the fatty acid desaturation program as a novel target for Cd to instigate hepatopathological alterations.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Cadmium/metabolism , Fatty Acids/metabolism , Hepatocytes/metabolism , Liver , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/chemically induced
4.
Pflugers Arch ; 473(8): 1315-1327, 2021 08.
Article in English | MEDLINE | ID: mdl-34145500

ABSTRACT

Cardiac alternans closely linked to calcium dysregulation is a crucial risk factor for fatal arrhythmia causing especially sudden death. Calcium overload is well-known to activate Ca2+-dependent protein kinase C (PKC); however, the effects of PKC on arrhythmogenic cardiac alternans have not yet been investigated. This study aimed to determine the contributions of PKC activities in cardiac alternans associated with calcium cycling disturbances. In the present study, action potential duration alternans (APD-ALT) induced by high free intracellular calcium ([Ca2+]i) exerted not only in a calcium concentration-dependent manner but also in a frequency-dependent manner. High [Ca2+]i-induced APD-ALT was suppressed by not only BAPTA-AM but also nifedipine. On the other hand, PKC inhibitors BIM and Gö 6976 eliminated high [Ca2+]i-induced APD-ALT, and PKC activator PMA was found to induce APD-ALT at normal [Ca2+]i condition. Furthermore, BIM effectively prevented calcium transient alternans (CaT-ALT) and even CaT disorders caused by calcium overload. Moreover, BIM not only eliminated electrocardiographic T-wave alternans (TWA) caused by calcium dysregulation, but also lowered the incidence of ventricular arrhythmias in isolated hearts. What's more, BIM prevented the expression of PKC α upregulated by calcium overload in high calcium-perfused hearts. We firstly found that pharmacologically inhibiting Ca2+-dependent PKC over-activation suppressed high [Ca2+]i-induced cardiac alternans. This recognition indicates that inhibition of PKC activities may become a therapeutic target for the prevention of pro-arrhythmogenic cardiac alternans associated with calcium dysregulation.


Subject(s)
Arrhythmias, Cardiac/etiology , Calcium/metabolism , Myocytes, Cardiac/physiology , Protein Kinase C/metabolism , Action Potentials , Animals , Arrhythmias, Cardiac/enzymology , Arrhythmias, Cardiac/prevention & control , Heart Conduction System/physiopathology , Molecular Targeted Therapy , Patch-Clamp Techniques , Primary Cell Culture , Protein Kinase C/antagonists & inhibitors , Protein Kinases/metabolism , Rabbits
5.
Life Sci ; 244: 117333, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31962132

ABSTRACT

AIMS: Detect the antiarrhythmic effect of crotonoside (Cro). MAIN METHODS: We used whole-cell patch-clamp techniques to detect the effects of Cro on action potentials (APs) and transmembrane ion currents in isolated rabbit left ventricular myocytes. We also verified the effect of Cro on ventricular arrhythmias caused by aconitine in vivo. KEY FINDINGS: Cro reduced the maximum depolarization velocity (Vmax) of APs and shortened the action potential duration (APD) in a concentration-dependent manner, but it had no significant effect on the resting membrane potential (RMP) or action potential amplitude (APA). It also inhibited the peak sodium current (INa) and L-type calcium current (ICaL) in a concentration-dependent manner with half-maximal inhibitory concentrations (IC50) of 192 µmol/L and 159 µmol/L, respectively. However, Cro had no significant effects on the inward rectifier potassium current (IK1) or rapidly activating delayed rectifier potassium current (IKr). Sea anemone toxin II (ATX II) increased the late sodium current (INaL), but Cro abolished this effect. Moreover, Cro significantly abolished ATX II-induced early afterdepolarizations (EADs) and high extracellular Ca2+ concentration (3.6 mmol/L)-induced delayed afterdepolarizations (DADs). We also verified that Cro effectively delayed the onset time and reduced the incidence of ventricular arrhythmias caused by aconitine in vivo. SIGNIFICANCE: These results revealed that Cro effectively inhibits INa, INaL, and ICaL in ventricular myocytes. Cro has antiarrhythmic potential and thus deserves further study.


Subject(s)
Guanine/pharmacology , Myocytes, Cardiac/drug effects , Action Potentials/drug effects , Animals , Anti-Arrhythmia Agents/metabolism , Anti-Arrhythmia Agents/pharmacology , Arrhythmias, Cardiac/physiopathology , Calcium/metabolism , Calcium Channels/drug effects , China , Female , Guanine/metabolism , Heart Ventricles/metabolism , Patch-Clamp Techniques/methods , Rabbits , Sodium/metabolism , Sodium Channels/drug effects
6.
Sci Rep ; 9(1): 20425, 2019 12 31.
Article in English | MEDLINE | ID: mdl-31892729

ABSTRACT

Ginsenoside Rb1 exerts its pharmacological action by regulating sodium, potassium and calcium ion channels in the membranes of nerve cells. These ion channels are also present in cardiomyocytes, but no studies have been reported to date regarding the effects of Rb1 on cardiac sodium currents (INa), L-type calcium currents (ICaL) and action potentials (APs). Additionally, the antiarrhythmic potential of Rb1 has not been assessed. In this study, we used a whole-cell patch clamp technique to assess the effect of Rb1 on these ion channels. The results showed that Rb1 inhibited INa and ICaL, reduced the action potential amplitude (APA) and maximum upstroke velocity (Vmax), and shortened the action potential duration (APD) in a concentration-dependent manner but had no effect on the inward rectifier potassium current (IK1), delayed rectifier potassium current (IK) or resting membrane potential (RMP). We also designed a pathological model at the cellular and organ level to verify the role of Rb1. The results showed that Rb1 abolished high calcium-induced delayed afterdepolarizations (DADs), depressed the increase in intracellular calcium ([Ca2+]i), relieved calcium overload and protected cardiomyocytes. Rb1 can also reduce the occurrence of ventricular premature beats (VPBs) and ventricular tachycardia (VT) in ischemia-reperfusion (I-R) injury.


Subject(s)
Action Potentials/drug effects , Anti-Arrhythmia Agents/pharmacology , Calcium Channels/metabolism , Ginsenosides/pharmacology , Myocytes, Cardiac/drug effects , Sodium Channels/metabolism , Animals , Calcium/metabolism , Myocytes, Cardiac/metabolism , Patch-Clamp Techniques , Rabbits , Sodium/metabolism
7.
Pharmacology ; 102(5-6): 253-261, 2018.
Article in English | MEDLINE | ID: mdl-30138939

ABSTRACT

AIM: Sodium houttuyfonate (SH), a chemical compound originating from Houttuynia cordata, has been reported to have anti-inflammatory, antibacterial, and antifungal effects, as well as cardioprotective effects. In this study, we investigated the effects of SH on cardiac electrophysiology, because to the best of our knowledge, this issue has not been previously investigated. METHODS: We used the whole-cell patch-clamp technique to explore the effects of SH on peak sodium current (INa.P) and late sodium current (INa.L) in isolated rabbit ventricular myocytes. To test the drug safety of SH, we also investigated the effect of SH on rapidly activated delayed rectifier potassium current (IKr). RESULTS: SH (1, 10, 50, and 100 µmol/L) inhibited INa.P in a concentration-dependent manner with an IC50 of 78.89 µmol/L. In addition, SH (100 µmol/L) accelerated the steady state inactivation of INa.P. Moreover, 50 and 100 µmol/L SH inhibited Anemonia sulcata toxin II (ATX II)-increased INa.L by 30.1 and 57.1%, respectively. However, SH (50 and 100 µmol/L) only slightly affected IKr. CONCLUSIONS: The inhibitory effects of SH on ATX II-increased INa.L may underlie the electrophysiological mechanisms of the cardioprotective effects of SH; SH has the potential to be an effective and safe antiarrhythmic drug.


Subject(s)
Alkanes/pharmacology , Cnidarian Venoms/antagonists & inhibitors , Myocytes, Cardiac/drug effects , Sulfites/pharmacology , Voltage-Gated Sodium Channels/metabolism , Animals , Anti-Arrhythmia Agents/pharmacology , Cnidarian Venoms/pharmacology , Heart Ventricles/cytology , Heart Ventricles/drug effects , Heart Ventricles/metabolism , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Patch-Clamp Techniques , Rabbits , Sodium Channels/metabolism , Voltage-Gated Sodium Channel Blockers/pharmacology
8.
Acta Pharmacol Sin ; 39(3): 357-370, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29072259

ABSTRACT

Barbaloin (10-ß-D-glucopyranosyl-1,8-dihydroxy-3-(hydroxymethyl)-9(10H)-anthracenone) is extracted from the aloe plant and has been reported to have anti-inflammatory, antitumor, antibacterial, and other biological activities. Here, we investigated the effects of barbaloin on cardiac electrophysiology, which has not been reported thus far. Cardiac action potentials (APs) and ionic currents were recorded in isolated rabbit ventricular myocytes using whole-cell patch-clamp technique. Additionally, the antiarrhythmic effect of barbaloin was examined in Langendorff-perfused rabbit hearts. In current-clamp recording, application of barbaloin (100 and 200 µmol/L) dose-dependently reduced the action potential duration (APD) and the maximum depolarization velocity (Vmax), and attenuated APD reverse-rate dependence (RRD) in ventricular myocytes. Furthermore, barbaloin (100 and 200 µmol/L) effectively eliminated ATX II-induced early afterdepolarizations (EADs) and Ca2+-induced delayed afterdepolarizations (DADs) in ventricular myocytes. In voltage-clamp recording, barbaloin (10-200 µmol/L) dose-dependently inhibited L-type calcium current (ICa.L) and peak sodium current (INa.P) with IC50 values of 137.06 and 559.80 µmol/L, respectively. Application of barbaloin (100, 200 µmol/L) decreased ATX II-enhanced late sodium current (INa.L) by 36.6%±3.3% and 71.8%±6.5%, respectively. However, barbaloin up to 800 µmol/L did not affect the inward rectifier potassium current (IK1) or the rapidly activated delayed rectifier potassium current (IKr) in ventricular myocytes. In Langendorff-perfused rabbit hearts, barbaloin (200 µmol/L) significantly inhibited aconitine-induced ventricular arrhythmias. These results demonstrate that barbaloin has potential as an antiarrhythmic drug.


Subject(s)
Anthracenes/pharmacology , Arrhythmias, Cardiac/prevention & control , Potassium Channels, Voltage-Gated/metabolism , Aconitine/antagonists & inhibitors , Aconitine/pharmacology , Action Potentials/drug effects , Animals , Arrhythmias, Cardiac/chemically induced , Calcium/pharmacology , Dose-Response Relationship, Drug , Isolated Heart Preparation , Myocytes, Cardiac/physiology , Patch-Clamp Techniques , Rabbits , Scorpion Venoms/antagonists & inhibitors , Scorpion Venoms/pharmacology
9.
Oncotarget ; 8(37): 61226-61238, 2017 Sep 22.
Article in English | MEDLINE | ID: mdl-28977859

ABSTRACT

Andrographolide has a protective effect on the cardiovascular system. To study its cardic-electrophysiological effects, action potentials and voltage-gated Na+ (INa), Ca2+ (ICaL), and K+ (IK1, IKr, Ito and IKur) currents were recorded using whole-cell patch clamp and current clamp techniques. Additionally, the effects of andrographolide on aconitine-induced arrhythmias were assessed on electrocardiograms in vivo. We found that andrographolide shortened action potential duration and reduced maximum upstroke velocity in rabbit left ventricular and left atrial myocytes. Andrographolide attenuated rate-dependence of action potential duration, and reduced or abolished delayed afterdepolarizations and triggered activities induced by isoproterenol (1 µM) and high calcium ([Ca2+]o=3.6 mM) in left ventricular myocytes. Andrographolide also concentration-dependently inhibited INa and ICaL, but had no effect on Ito, IKur, IK1, or IKr in rabbit left ventricular and left atrial myocytes. Andrographolide treatment increased the time and dosage thresholds of aconitine-induced arrhythmias, and reduced arrhythmia incidence and mortality in rabbits. Our results indicate that andrographolide inhibits cellular arrhythmias (delayed afterdepolarizations and triggered activities) and aconitine-induced arrhythmias in vivo, and these effects result from INa and ICaL inhibition. Andrographolide may be useful as a class I and IV antiarrhythmic therapeutic.

10.
DNA Repair (Amst) ; 58: 1-12, 2017 10.
Article in English | MEDLINE | ID: mdl-28837865

ABSTRACT

It was reported that valproic acid (VPA, a histone deacetylase inhibitor) can sensitize cancer cells to hydroxyurea (HU, a ribonucleotide reductase inhibitor) for chemotherapy, although the mechanism of VPA-induced HU sensitization is unclear. In this study, we systematically characterized VPA-induced HU sensitization of breast cancer cells. Multiple breast cancer cell models were employed to investigate whether the safe concentration of 0.5mM VPA and 2mM HU can result in DNA double-strand breaks (DSBs) and impact cell survival. Furthermore, the underlying mechanism was explored through cell biology assays, including clonogenic survival, homologous recombination (HR) activity, immunoblot and immunofluorescence. We found that VPA and HU cooperatively suppressed cancer cell survival. VPA resulted in the accumulation of more DNA double-strand breaks (DSBs) in response to HU-induced replication arrest and was able to block HU-stimulated homologous recombination (HR) through inhibiting the activity of two key HR repair proteins by hyperphosphorylation of replication protein A2 (RPA2-p) and recombinase Rad51. However, apoptosis was not detected under this condition. In addition, the results from the survival fraction in the cells expressing defective RPA2-p showed that VPA disrupted the HU-induced RPA2-p-Rad51-mediated HR pathway. Importantly, these findings were further supported by analyzing primary-culture cells from the tissue of chemical carcinogen (DMBA)-induced breast cancer in rats. Thus, our data demonstrated that VPA and HU synergistically suppressed tumor cells via disturbing RPA2-p-mediated DNA repair pathway, which provides a new way for combining chemotherapeutic drugs to sensitize breast cancer cells.


Subject(s)
Breast Neoplasms/drug therapy , Hydroxyurea/therapeutic use , Recombinational DNA Repair/drug effects , Replication Protein A/antagonists & inhibitors , Valproic Acid/therapeutic use , Animals , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Breast Neoplasms/metabolism , DNA/metabolism , DNA Breaks, Double-Stranded , DNA Replication/drug effects , Female , Humans , Rad51 Recombinase/metabolism , Rats , Replication Protein A/metabolism , Valproic Acid/pharmacology
11.
Front Physiol ; 8: 342, 2017.
Article in English | MEDLINE | ID: mdl-28611679

ABSTRACT

Icariin, a flavonoid monomer from Herba Epimedii, has confirmed pharmacological and biological effects. However, its effects on arrhythmias and cardiac electrophysiology remain unclear. Here we investigate the effects of icariin on ion currents and action potentials (APs) in the rabbit myocardium. Furthermore, the effects of icariin on aconitine-induced arrhythmias were assessed in whole rabbits. Ion currents and APs were recorded in voltage-clamp and current-clamp mode in rabbit left ventricular myocytes (LVMs) and left atrial myocytes (LAMs), respectively. Icariin significantly shortened action potential durations (APDs) at 50 and 90% repolarization (APD50 and APD90) and reduced AP amplitude (APA) and the maximum upstroke velocity (Vmax) of APs in LAMs and LVMs; however, icariin had no effect on resting membrane potential (RMP) in these cells. Icariin decreased the rate-dependence of the APD and completely abolished anemonia toxin II (ATX-II)-induced early afterdepolarizations (EADs). Moreover, icariin significantly suppressed delayed afterdepolarizations (DADs) and triggered activities (TAs) elicited by isoproterenol (ISO, 1 µM) and high extracellular calcium concentrations ([Ca2+]o, 3.6 mM) in LVMs. Icariin also decreased INaT in a concentration-dependent manner in LAMs and LVMs, with IC50 values of 12.28 ± 0.29 µM (n = 8 cells/4 rabbits) and 11.83 ± 0.92 µM (n = 10 cells/6 rabbits; p > 0.05 vs. LAMs), respectively, and reversed ATX-II-induced INaL in a concentration-dependent manner in LVMs. Furthermore, icariin attenuated ICaL in a dose-dependent manner in LVMs. The corresponding IC50 value was 4.78 ± 0.89 µM (n = 8 cells/4 rabbits), indicating that the aforementioned current in LVMs was 2.8-fold more sensitive to icariin than ICaL in LAMs (13.43 ± 2.73 µM; n = 9 cells/5 rabbits). Icariin induced leftward shifts in the steady-state inactivation curves of INaT and ICaL in LAMs and LVMs but did not have a significant effect on their activation processes. Moreover, icariin had no effects on IK1 and IKr in LVMs or Ito and IKur in LAMs. These results revealed for the first time that icariin is a multichannel blocker that affects INaT, INaL and ICaL in the myocardium and that the drug had significant inhibitory effects on aconitine-induced arrhythmias in whole rabbits. Therefore, icariin has potential as a class I and IV antiarrhythmic drug.

12.
Int J Mol Sci ; 18(5)2017 May 10.
Article in English | MEDLINE | ID: mdl-28489060

ABSTRACT

This study explored whether valproic acid (VPA, a histone deacetylase inhibitor) could radiosensitize osteosarcoma and primary-culture tumor cells, and determined the mechanism of VPA-induced radiosensitization. The working system included osteosarcoma cells (U2OS) and primary-culture cells from chemical carcinogen (DMBA)-induced breast cancer in rats; and clonogenic survival, immunofluorescence, fluorescent in situ hybridization (FISH) for chromosome aberrations, and comet assays were used in this study. It was found that VPA at the safe or critical safe concentration of 0.5 or 1.0 mM VPA could result in the accumulation of more ionizing radiation (IR)-induced DNA double strand breaks, and increase the cell radiosensitivity. VPA-induced radiosensitivity was associated with the inhibition of DNA repair activity in the working systems. In addition, the chromosome aberrations including chromosome breaks, chromatid breaks, and radial structures significantly increased after the combination treatment of VPA and IR. Importantly, the results obtained by primary-culture cells from the tissue of chemical carcinogen-induced breast cancer in rats further confirmed our findings. The data in this study demonstrated that VPA at a safe dose was a radiosensitizer for osteosarcoma and primary-culture tumor cells through suppressing DNA-double strand breaks repair function.


Subject(s)
Mammary Neoplasms, Experimental/genetics , Osteosarcoma/genetics , Radiation Tolerance/drug effects , Radiation-Sensitizing Agents/pharmacology , Valproic Acid/pharmacology , Animals , Cell Line, Tumor , Cells, Cultured , Chromosome Aberrations , DNA Breaks, Double-Stranded , DNA Repair , Female , Humans , Rats , Rats, Sprague-Dawley
13.
Radiat Prot Dosimetry ; 175(4): 508-516, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28096311

ABSTRACT

To assess the health statue of chronically exposed Chinese medical radiation workers. A cross-sectional study of 530 medical radiation workers in a city of China was conducted to document the health status and the monitored annually absorbed doses. Long-term and low-dose radiation exposure can affect a number of health indicators in the individuals, which covered the cardiovascular system, hematologic system, ophthalmology, liver and kidney's functions, chromosome aberration and micronucleus. The differences in the health status between male and female individuals were associated with job types and exposed years of service. The monitored doses of individuals were lower than the limit value of the national standard. The health status in chronically exposed individuals demonstrated some gender difference associated with length of exposure and work type. This study provides some evidence to understand the health status of medical radiation workers in China and have the potentially to inform screening and clinical diagnosis.


Subject(s)
Health Personnel , Occupational Exposure , Radiology , China , Cross-Sectional Studies , Female , Health Status , Humans , Male , Radiation, Ionizing
14.
Food Chem ; 197(Pt A): 516-21, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-26616983

ABSTRACT

Addition of salt solution in making wheat dough improves viscoelasticity. However, the effect of native salt fortification on dough quality is unclear. Here, wheat plants were subjected to post-anthesis salt stress to modify salt ion content in grains. The contents of Na(+) and K(+), high-molecular-weight glutenin subunits (HMW-GS), glutenin macropolyers (GMP) and amino acids in mature grains were measured. As NaCl concentration in soil increased, grain yield decreased while Na(+) and K(+) contents increased. The contents of amino acids, HMW-GS and GMP in grains also increased, especially when NaCl concentration exceeded 0.45%. Fraction of GMP larger than 10 µm was also increased. Na(+) and K(+) contents were significantly positively correlated to GMP and total HMW-GS contents, and to large GMP fraction.


Subject(s)
Glutens/chemistry , Sodium Chloride/metabolism , Triticum/chemistry , Glutens/metabolism , Molecular Weight , Polymerization , Triticum/growth & development , Triticum/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...