Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.073
Filter
1.
Chemosphere ; : 142254, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38714253

ABSTRACT

Anaerobic fluidized membrane bioreactors (AFMBR) has attracted growing interest as an emerging wastewater treatment technology towards energy recovery from wastewater. AFMBR combines the advantages of anaerobic digestion and membrane bioreactors and shows great potential in overcoming limiting factors such as membrane fouling and low efficiency in treating low-strength wastewater such as domestic sewage.In AFMBR, the fluidized media performs significant role in reducing the membrane fouling, as well as improving the anaerobic microbial activity of AFMBRs. Despite extensive research aimed at mitigating membrane fouling in AFMBR, there has yet to emerge a comprehensive review focusing on strategies for controlling membrane fouling with an emphasis on low energy consumption.Thus, this work overviews the recent progress of AFMBR by summarizing the factors of membrane fouling and energy consumption in AFMBR, and provides targeted in-depth analysis of energy consumption related to membrane fouling control. Additionally, future development directions for AFMBR are also outlooked, and further promotion of AFMBR engineering application is expected. By shedding light on the relationship between energy consumption and membrane fouling control, this review offers a useful information for developing new AFMBR processes with an improved efficiency, low membrane fouling and low energy consumption, and encourages more research efforts and technological advancements in the domain of AFMBR.

2.
Mol Cell Biochem ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38743321

ABSTRACT

The aim is to investigate the relationship between serum coagulation parameters (PT, APTT, D-D and FDP) before hospitalization and recurrence of chronic subdural hematoma (CSDH). 236 patients with CSDH who were diagnosed for the first time and had complete medical records were followed up for at least 90 days. Fifty patients (21.2%) had relapsed. Univariate analysis was conducted including general data, imaging data and test results. Serum coagulation parameters (PT, APTT, D-D and FDP) were detected for all CSDH patients. The study identified several factors that exhibited a significant correlation with chronic subdural hematoma (CSDH) recurrence. These factors included advanced age (p = 0.01), hypertension (p = 0.04), liver disease (p = 0.01), anticoagulant drug use (p = 0.01), antiplatelet drug use (p = 0.02), bilateral hematoma (p = 0.02), and single-layer hematoma (p = 0.01). In addition, the presence of fibrin/fibrinogen degradation products (FDP) exceeding 5 mg/L demonstrated a significant relationship with CSDH recurrence (P < 0.05). Notably, the combined assessment of D-dimer (D-D) and FDP exhibited a significant difference, particularly regarding recurrence within 30 days after surgery (P < 0.05). The simultaneous elevation of serum FDP and D-D levels upon admission represents a potentially novel predictor for CSDH recurrence. This finding is particularly relevant for patients who experience recurrence within 30 days following surgical intervention. Older individuals with CSDH who undergo trepanation and drainage should be closely monitored due to their relatively higher recurrence rate.

3.
Adv Mater ; : e2403038, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724029

ABSTRACT

Perovskite solar cells (PSCs) are developed rapidly in efficiency and stability in recent years, which can compete with silicon solar cells. However, an important obstacle to the commercialization of PSCs is the toxicity of lead ions (Pb2+) from water-soluble perovskites. The entry of free Pb2+ into organisms can cause severe harm to humans, such as blood lead poisoning, organ failure, etc. Therefore, this work reports a "lead isolation-capture" dual detoxification strategy with calcium disodium edetate (EDTA Na-Ca), which can inhibit lead leakage from PSCs under extreme conditions. More importantly, leaked lead exists in a nontoxic aggregation state chelated by EDTA. For the first time, in vivo experiments are conducted in mice to systematically prove that this material has a significant inhibitory effect on the toxicity of perovskites. In addition, this strategy can further enhance device performance, enabling the optimized devices to achieve an impressive power conversion efficiency (PCE) of 25.19%. This innovative strategy is a major breakthrough in the research on the prevention of lead toxicity in PSCs.

4.
Front Neurosci ; 18: 1368552, 2024.
Article in English | MEDLINE | ID: mdl-38716255

ABSTRACT

Probucol has been utilized as a cholesterol-lowering drug with antioxidative properties. However, the impact and fundamental mechanisms of probucol in obesity-related cognitive decline are unclear. In this study, male C57BL/6J mice were allocated to a normal chow diet (NCD) group or a high-fat diet (HFD) group, followed by administration of probucol to half of the mice on the HFD regimen. Subsequently, the mice were subjected to a series of behavioral assessments, alongside the measurement of metabolic and redox parameters. Notably, probucol treatment effectively alleviates cognitive and social impairments induced by HFD in mice, while exhibiting no discernible influence on mood-related behaviors. Notably, the beneficial effects of probucol arise independently of rectifying obesity or restoring systemic glucose and lipid homeostasis, as evidenced by the lack of changes in body weight, serum cholesterol levels, blood glucose, hyperinsulinemia, systemic insulin resistance, and oxidative stress. Instead, probucol could regulate the levels of nitric oxide and superoxide-generating proteins, and it could specifically alleviate HFD-induced hippocampal insulin resistance. These findings shed light on the potential role of probucol in modulating obesity-related cognitive decline and urge reevaluation of the underlying mechanisms by which probucol exerts its beneficial effects.

5.
Org Lett ; 26(18): 3982-3986, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38690829

ABSTRACT

Described herein is the development of a visible-light-induced photoredox 1,6-enyne reductive cyclization via selective reduction of a triple bond instead of an activated double bond. The selective 1,6-enyne radical cyclization/carbon═carbon double bond cleavage provided a straightforward route to structurally valuable α,ß-unsaturated γ-lactams. TEMPO-trap experiments, control experiments, and DFT calculations have offered evidence supporting the possible catalytic cycle.

6.
Clin Lung Cancer ; 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38705833

ABSTRACT

BACKGROUND: Immune checkpoint inhibitors have revolutionized non-small cell lung cancer (NSCLC) treatment but may pose greater technical challenges for surgery. This study aims to assess the feasibility and oncological effectiveness of video-assisted thoracoscopic surgery (VATS) for resectable stage III NSCLC after neoadjuvant immunochemotherapy. METHODS: Initial stage IIIA-IIIB NSCLC patients with neoadjuvant immunochemotherapy undergoing either VATS or open lobectomy at 6 medical centers during 2019-2023 were retrospectively identified. Perioperative outcomes and 2-year survival was analyzed. Propensity-score matching (PSM) was employed to balance patient baseline characteristics. RESULTS: Among the total 143 patients, PSM yielded 62 cases each for VATS and OPEN groups. Induction-related adverse events were comparable between the 2 groups. VATS showed a 14.5% conversion rate. Notably, VATS decreased numeric rating scales for postoperative pain, shortened chest tube duration (5[4-7] vs. 6[5-8] days, P = .021), reduced postoperative comorbidities (21.0% vs. 37.1%, P = .048), and dissected less N1 lymph nodes (5[4-6] vs. 7[5-9], P = .005) compared with thoracotomy. Even when converted, VATS achieves perioperative outcomes equivalent to thoracotomy. Additionally, over a median follow-up of 29.5 months, VATS and thoracotomy demonstrated comparable 2-year recurrence-free survival (77.20% vs. 73.73%, P = .640), overall survival (87.22% vs. 88.00%, P = .738), cumulative incidences of cancer-related death, and recurrence patterns. Subsequent subgroup comparisons and multivariate Cox analysis likewise revealed no statistical difference between VATS and thoracotomy. CONCLUSION: VATS is a viable and effective option for resectable stage III NSCLC patients following neoadjuvant immunochemotherapy, leading to decreased surgical-related pain, earlier chest tube removal, reduced postoperative complications, and similar survival outcomes compared to thoracotomy.

7.
Aging (Albany NY) ; 162024 May 03.
Article in English | MEDLINE | ID: mdl-38709264

ABSTRACT

Despite neoadjuvant chemoradiotherapy (CRT) being the established standard for treating advanced rectal cancer, clinical outcomes remain suboptimal, necessitating the identification of predictive biomarkers for improved treatment decisions. Previous studies have hinted at the oncogenic properties of the Fc fragment of IgG binding protein (FCGBP) in various cancers; however, its clinical significance in rectal cancer remains unclear. In this study, we first conducted an analysis of a public transcriptome comprising 46 rectal cancer patients. Focusing on cell adhesion during data mining, we identified FCGBP as the most upregulated gene associated with CRT resistance. Subsequently, we assessed FCGBP immunointensity using immunohistochemical staining on 343 rectal cancer tissue blocks. Elevated FCGBP immunointensity correlated with lymph node involvement before treatment (p = 0.001), tumor invasion, and lymph node involvement after treatment (both p < 0.001), vascular invasion (p = 0.001), perineural invasion (p = 0.041), and reduced tumor regression (p < 0.001). Univariate analysis revealed a significant association between high FCGBP immunoexpression and inferior disease-specific survival, local recurrence-free survival, and metastasis-free survival (all p ≤ 0.0002). Furthermore, high FCGBP immunoexpression independently emerged as an unfavorable prognostic factor for all three survival outcomes in the multivariate analysis (all p ≤ 0.025). Enriched pathway analysis substantiated the role of FCGBP in conferring resistance to radiation. In summary, our findings suggest that elevated FCGBP immunoexpression in rectal cancer significantly correlates with a poor response to CRT and diminished patient survival. FCGBP holds promise as a valuable prognostic biomarker for rectal cancer patients undergoing CRT.

8.
Am J Chin Med ; : 1-20, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38716619

ABSTRACT

Polyphyllin VII is a biologically active herbal monomer extracted from the traditional Chinese herbal medicine Chonglou. Many studies have demonstrated the anticancer activity of polyphyllin VII against various types of cancers, such as colon, liver, and lung cancer, but its effect on breast cancer has not been elucidated. In this study, we demonstrate that polyphyllin VII inhibited proliferation, increased production of intracellular reactive oxygen species, and decreased mitochondrial membrane potential in breast cancer cells. Notably, polyphyllin VII also induced apoptosis via the mitochondrial pathway. Transcriptome sequencing was used to analyze the targets of PPVII in regulating breast cancer cells. Mechanistic studies showed that polyphyllin VII downregulated Son of Sevenless1 (SOS1) and inhibited the MAPK/ERK pathway. Furthermore, PPVII exerted strong antitumor effects in vivo in nude mice injected with breast cancer cells. Our results suggest that PPVII may promote apoptosis through regulating the SOS1/MAPK/ERK pathway, making it a possible candidate target for the treatment of breast cancer.

9.
J Med Biochem ; 43(2): 200-208, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38699699

ABSTRACT

Background: Obstructive Sleep Apnea Syndrome (OSAS) is a breathing disorder during sleep. The work was to evaluate the relationship between vasoactive and oxidative stress indicators and cardiac function in Obstructive Sleep Apnea Syndrome (OSAS) patients. Methods: OSAS patients (n=120) were treated with CPAP from May 2021 to June 2022. According to the clinical efficacy, the patients were divided into effective and ineffective groups. Vasoactive factors and oxidative stress indices were compared between the two groups to evaluate their clinical efficacy. The changes in cardiac function indices in the two groups were tested, and the correlation between vasoactive factors and oxidative stress indices and cardiac function was analysed. Results: The effective rate of CPAP was 63.33% (76/120). Ang II, ET-1, and MDA levels were lower, and the SOD level was higher in the effective group than in the ineffective group after treatment. The AUC of the four indicators was all greater than 0.75. LPWT and IVST values of the effective group were lower than the ineffective group. A positive correlation was identified between the levels of Ang II, ET-1, and MDA with LPWT, between levels of ET-1 and MDA with IVST, and a negative correlation between SOD with LPWT and IVST. Conclusions: CPAP treatment can effectively improve vascular activity and reduce the oxidative stress response in OSAS patients, and the combined detection of vasoactive factors and oxidative stress indicators is valuable for evaluating the efficacy of CPAP and is related to the cardiac function of patients.

10.
Bioresour Technol ; 402: 130790, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38703964

ABSTRACT

An ultrasound (US)/biochar (BC)/ferrate (Fe (VI)) system was firstly proposed to enhance perfluorooctanoic acid (PFOA) defluorination. It achieved 93 % defluorination optimally, higher than the sum of 77 % (28 % and 49 % for US/BC and US/Fe (VI) respectively), implying synergistic effect. Besides, the mechanism study confirmed that, this system can not only increase the specific surface area of BC and the generation of reactive oxidant species (ROS), enriching the active sites and forming new oxygen-containing functional groups, but also promote the formation of intermediate iron species. The PFOA degradation in the US/BC/Fe (VI) was probably an adsorption-degradation process, both ROS and electron transfer promoted the defluorination. Additionally, its sustainability was also demonstrated with 14 % reduced defluorination percentage after five cycles of BC. Overall, the synergistic effect of the US/BC/Fe (VI) and its enhancing mechanism for PFOA defluorination were clarified firstly, which contributes to the development of biochar for assisting polyfluoroalkyl substances degradation.

11.
J Environ Manage ; 359: 120979, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38692033

ABSTRACT

If pharmaceutical wastewater is not managed effectively, the presence of residual antibiotics will result in significant environmental contamination. In addition, inadequate utilization of agricultural waste represents a squandering of resources. The objective of this research was to assess the efficacy of iron-doped biochar (Fe-BC) derived from peanut shells in degrading high concentrations of Tetracycline (TC) wastewater through activated peroxymonosulfate. Fe-BC demonstrated significant efficacy, achieving a removal efficiency of 87.5% for TC within 60 min without the need to adjust the initial pH (20 mg/L TC, 2 mM PMS, 0.5 g/L catalyst). The degradation mechanism of TC in this system involved a dual action, namely Reactive Oxygen Species (ROS) and electron transfer. The primary active sites were the Fe species, which facilitated the generation of SO4•-, •OH, O2•-, and 1O2. The presence of Fe species and the C=C structure in the Fe-BC catalyst support the electron transfer. Degradation pathways were elucidated through the identification of intermediate products and calculation of the Fukui index. The Toxicity Estimator Software Tool (T.E.S.T.) suggested that the intermediates exhibited lower levels of toxicity. Furthermore, the system exhibited exceptional capabilities in real water and circulation experiments, offering significant economic advantages. This investigation provides an efficient strategy for resource recycling and the treatment of high-concentration antibiotic wastewater.

13.
Article in English | MEDLINE | ID: mdl-38691438

ABSTRACT

Pre-hospital emergency medical service (EMS) tasks often come with complex and diverse noise interferences, posing challenges in implementing ASR-based medical technologies and hindering efficient and accurate telephonic communication. Among the different types of noise distortion, interfering speech is especially annoying. To address these issues, our aim is to develop a technology capable of extracting the intended speech content of the target physician from noisy and mixed audio during EMS tasks. In this work, we propose a monoaural personalized speech enhancement (PSE) method called pDenoiser, which is a real-time neural network that operates in the time domain. By leveraging the prior vocalization cues of emergency physicians, pDenoiser selectively enhances target speech components while suppressing noise and nontarget speech components, thereby improving speech quality and speech recognition accuracy under noisy conditions. We demonstrate the potential value of our approach through evaluations on both public general-domain test sets and our self-collected real-world EMS test sets. The experimental results are promising, as our model effectively promotes both speech quality and ASR performance under various conditions and outperforms related methods across multiple evaluation metrics. Our methodology will hopefully elevate EMS efficiency and fortify security against nontarget speech during EMS tasks.

14.
Br J Cancer ; 130(10): 1687-1696, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38561434

ABSTRACT

BACKGROUND: Menopausal hormone therapy (MHT), a common treatment to relieve symptoms of menopause, is associated with a lower risk of colorectal cancer (CRC). To inform CRC risk prediction and MHT risk-benefit assessment, we aimed to evaluate the joint association of a polygenic risk score (PRS) for CRC and MHT on CRC risk. METHODS: We used data from 28,486 postmenopausal women (11,519 cases and 16,967 controls) of European descent. A PRS based on 141 CRC-associated genetic variants was modeled as a categorical variable in quartiles. Multiplicative interaction between PRS and MHT use was evaluated using logistic regression. Additive interaction was measured using the relative excess risk due to interaction (RERI). 30-year cumulative risks of CRC for 50-year-old women according to MHT use and PRS were calculated. RESULTS: The reduction in odds ratios by MHT use was larger in women within the highest quartile of PRS compared to that in women within the lowest quartile of PRS (p-value = 2.7 × 10-8). At the highest quartile of PRS, the 30-year CRC risk was statistically significantly lower for women taking any MHT than for women not taking any MHT, 3.7% (3.3%-4.0%) vs 6.1% (5.7%-6.5%) (difference 2.4%, P-value = 1.83 × 10-14); these differences were also statistically significant but smaller in magnitude in the lowest PRS quartile, 1.6% (1.4%-1.8%) vs 2.2% (1.9%-2.4%) (difference 0.6%, P-value = 1.01 × 10-3), indicating 4 times greater reduction in absolute risk associated with any MHT use in the highest compared to the lowest quartile of genetic CRC risk. CONCLUSIONS: MHT use has a greater impact on the reduction of CRC risk for women at higher genetic risk. These findings have implications for the development of risk prediction models for CRC and potentially for the consideration of genetic information in the risk-benefit assessment of MHT use.


Subject(s)
Colorectal Neoplasms , Genetic Predisposition to Disease , Humans , Female , Colorectal Neoplasms/genetics , Colorectal Neoplasms/epidemiology , Middle Aged , Case-Control Studies , Risk Factors , Aged , Hormone Replacement Therapy/adverse effects , Risk Assessment , Menopause , Postmenopause , Estrogen Replacement Therapy/adverse effects
15.
Adv Drug Deliv Rev ; 209: 115323, 2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38653402

ABSTRACT

With the aging population on the rise, neurodegenerative disorders have taken center stage as a significant health concern. The blood-brain barrier (BBB) plays an important role to maintain the stability of central nervous system, yet it poses a formidable obstacle to delivering drugs for neurodegenerative disease therapy. Various methods have been devised to confront this challenge, each carrying its own set of limitations. One particularly promising noninvasive approach involves the utilization of focused ultrasound (FUS) combined with contrast agents-microbubbles (MBs) to achieve transient and reversible BBB opening. This review provides a comprehensive exploration of the fundamental mechanisms behind FUS/MBs-mediated BBB opening and spotlights recent breakthroughs in its application for neurodegenerative diseases. Furthermore, it addresses the current challenges and presents future perspectives in this field.

16.
Sci Rep ; 14(1): 9235, 2024 04 22.
Article in English | MEDLINE | ID: mdl-38649718

ABSTRACT

Magnetic resonance-diffusion tensor imaging (MR-DTI) has been used in the microvascular decompression and gamma knife radiosurgery in trigeminal neuralgia (TN) patients; however, use of percutaneous stereotactic radiofrequency rhizotomy (PSR) to target an abnormal trigeminal ganglion (ab-TG) is unreported. Fractional anisotropy (FA), mean and radial diffusivity (MD and RD, respectively), and axial diffusivity (AD) of the trigeminal nerve (CNV) were measured in 20 TN patients and 40 healthy control participants immediately post PSR, at 6-months, and at 1 year. Longitudinal alteration of the diffusivity metrics and any correlation with treatment effects, or prognoses, were analyzed. In the TN group, either low FA (value < 0.30) or a decreased range compared to the adjacent FA (dFA) > 17% defined an ab-TG. Two-to-three days post PSR, all 15 patients reported decreased pain scores with increased FA at the ab-TG (P < 0.001), but decreased MD and RD (P < 0.01 each). Treatment remained effective in 10 of 14 patients (71.4%) and 8 of 12 patients (66.7%) at the 6-month and 1-year follow-ups, respectively. In patients with ab-TGs, there was a significant difference in treatment outcomes between patients with low FA values (9 of 10; 90%) and patients with dFA (2 of 5; 40%) (P < 0.05). MR-DTI with diffusivity metrics correlated microstructural CNV abnormalities with PSR outcomes. Of all the diffusivity metrics, FA could be considered a novel objective quantitative indicator of treatment effects and a potential indicator of PSR effectiveness in TN patients.


Subject(s)
Diffusion Tensor Imaging , Rhizotomy , Trigeminal Neuralgia , Humans , Trigeminal Neuralgia/surgery , Trigeminal Neuralgia/diagnostic imaging , Male , Female , Rhizotomy/methods , Middle Aged , Diffusion Tensor Imaging/methods , Aged , Treatment Outcome , Adult , Trigeminal Nerve/surgery , Trigeminal Nerve/diagnostic imaging , Trigeminal Nerve/pathology , Radiosurgery/methods , Anisotropy , Prognosis
17.
Adv Mater ; : e2312429, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38655823

ABSTRACT

2D materials such as graphene, MoS2, and hexagonal BN are the most advanced solid lubricating materials with superior friction and anti-wear performance. However, as a typical surface phenomenon, the lubricating properties of 2D materials are largely dependent on the surrounding environment, such as temperature, stress, humidity, oxygen, and other environmental substances. Given the technical challenges in experiment for real-time and in situ detection of microscopic environment-material interaction, recent years have witnessed the acceleration of computational research on the lubrication behavior of 2D materials in realistic environments. This study reviews the up-to-date computational studies for the effect of environmental factors on the lubrication performance of 2D materials, summarizes the theoretical methods in lubrication from classical to quantum-mechanics ones, and emphasizes the importance of quantum method in revealing the lubrication mechanism at atomic and electronic level. An effective simulation method based on ab initio molecular dynamics is also proposed to try to provide more ways to accurately reveal the friction mechanisms and reliably guide the lubricating material design. On the basis of current development, future prospects, and challenges for the simulation and modeling in lubrication with realistic environment are outlined.

18.
BMC Biol ; 22(1): 86, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38637801

ABSTRACT

BACKGROUND: The blood-brain barrier serves as a critical interface between the bloodstream and brain tissue, mainly composed of pericytes, neurons, endothelial cells, and tightly connected basal membranes. It plays a pivotal role in safeguarding brain from harmful substances, thus protecting the integrity of the nervous system and preserving overall brain homeostasis. However, this remarkable selective transmission also poses a formidable challenge in the realm of central nervous system diseases treatment, hindering the delivery of large-molecule drugs into the brain. In response to this challenge, many researchers have devoted themselves to developing drug delivery systems capable of breaching the blood-brain barrier. Among these, blood-brain barrier penetrating peptides have emerged as promising candidates. These peptides had the advantages of high biosafety, ease of synthesis, and exceptional penetration efficiency, making them an effective drug delivery solution. While previous studies have developed a few prediction models for blood-brain barrier penetrating peptides, their performance has often been hampered by issue of limited positive data. RESULTS: In this study, we present Augur, a novel prediction model using borderline-SMOTE-based data augmentation and machine learning. we extract highly interpretable physicochemical properties of blood-brain barrier penetrating peptides while solving the issues of small sample size and imbalance of positive and negative samples. Experimental results demonstrate the superior prediction performance of Augur with an AUC value of 0.932 on the training set and 0.931 on the independent test set. CONCLUSIONS: This newly developed Augur model demonstrates superior performance in predicting blood-brain barrier penetrating peptides, offering valuable insights for drug development targeting neurological disorders. This breakthrough may enhance the efficiency of peptide-based drug discovery and pave the way for innovative treatment strategies for central nervous system diseases.


Subject(s)
Cell-Penetrating Peptides , Central Nervous System Diseases , Humans , Blood-Brain Barrier/chemistry , Endothelial Cells , Cell-Penetrating Peptides/chemistry , Cell-Penetrating Peptides/pharmacology , Cell-Penetrating Peptides/therapeutic use , Brain , Central Nervous System Diseases/drug therapy
19.
Stat Methods Med Res ; : 9622802241247725, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38676359

ABSTRACT

This article proposes a Bayesian approach for jointly estimating marginal conditional quantiles of multi-response longitudinal data with multivariate mixed effects model. The multivariate asymmetric Laplace distribution is employed to construct the working likelihood of the considered model. Penalization priors on regression parameters are incorporated into the working likelihood to conduct Bayesian high-dimensional inference. Markov chain Monte Carlo algorithm is used to obtain the fully conditional posterior distributions of all parameters and latent variables. Monte Carlo simulations are conducted to evaluate the sample performance of the proposed joint quantile regression approach. Finally, we analyze a longitudinal medical dataset of the primary biliary cirrhosis sequential cohort study to illustrate the real application of the proposed modeling method.

20.
Methods Mol Biol ; 2803: 35-48, 2024.
Article in English | MEDLINE | ID: mdl-38676883

ABSTRACT

The lack of a precise noninvasive, clinical evaluation method for cardiac fibrosis hinders the development of successful treatments that can effectively work in physiological settings, where tissues and organs are interconnected and moderating drug responses. To address this challenge and advance personalized medicine, researchers have turned to human-induced pluripotent stem (iPS) cells, which can be differentiated to resemble the human heart in terms of structure, function and cellular composition. In this chapter, we present an assay protocol that uses these iPS cells to generate heart organoids for the in vitro evaluation of cardiac fibrosis. By establishing this biological platform, we pave the way for conducting phenotype evaluation and treatment screening in a multiscale approach, aiming to discover effective interventions for the treatment of cardiac fibrosis.


Subject(s)
Cell Differentiation , Fibrosis , Induced Pluripotent Stem Cells , Organoids , Humans , Induced Pluripotent Stem Cells/cytology , Organoids/pathology , Organoids/cytology , Myocardium/pathology , Myocardium/cytology , Cell Culture Techniques/methods , Myocytes, Cardiac/cytology , Myocytes, Cardiac/pathology , Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...