Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Toxins (Basel) ; 16(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38922152

ABSTRACT

Studies on the interaction sites of peptide toxins and ion channels typically involve site-directed mutations in toxins. However, natural mutant toxins exist among them, offering insights into how the evolutionary process has conserved crucial sequences for activities and molecular target selection. In this study, we present a comparative investigation using electrophysiological approaches and computational analysis between two alpha toxins from evolutionarily close scorpion species of the genus Tityus, namely, Tst3 and Ts3 from T. stigmurus and T. serrulatus, respectively. These toxins exhibit three natural substitutions near the C-terminal region, which is directly involved in the interaction between alpha toxins and Nav channels. Additionally, we characterized the activity of the Tst3 toxin on Nav1.1-Nav1.7 channels. The three natural changes between the toxins did not alter sensitivity to Nav1.4, maintaining similar intensities regarding their ability to alter opening probabilities, delay fast inactivation, and induce persistent currents. Computational analysis demonstrated a preference for the down conformation of VSD4 and a shift in the conformational equilibrium towards this state. This illustrates that the sequence of these toxins retained the necessary information, even with alterations in the interaction site region. Through electrophysiological and computational analyses, screening of the Tst3 toxin on sodium isoform revealed its classification as a classic α-NaTx with a broad spectrum of activity. It effectively delays fast inactivation across all tested isoforms. Structural analysis of molecular energetics at the interface of the VSD4-Tst3 complex further confirmed this effect.


Subject(s)
Scorpion Venoms , Scorpions , Scorpion Venoms/chemistry , Scorpion Venoms/genetics , Animals , Brazil , Humans , Xenopus laevis , Ion Channel Gating/drug effects , Amino Acid Sequence , Animals, Poisonous
2.
Biochim Biophys Acta Biomembr ; 1865(1): 184057, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36240866

ABSTRACT

Ts17 was purified from the venom of the scorpion Tityus serrulatus, the most dangerous scorpion species in Brazil. The activity on Nav1.1-Nav1.7 channels was electrophysiologically characterized by patch-clamp technique. Ts17 amino acid sequence indicated high similarity to alpha-scorpion toxins; however, it presented beta-toxin activity, altering the kinetics of the Na+-channels. The most affected subtypes during activation (with and without prepulse) and inactivation phases were Nav1.2 and Nav1.5, respectively. For recovery from inactivation, the most affected voltage-gated sodium channel was Nav1.5. Circular dichroism spectra showed that Ts17 presents mainly ß-sheet and unordered structures at all analyzed pHs, and the maximum value of α-helix was found at pH 4.0 (13.3 %). Based on the results, Ts17 might be used as a template to develop a new cardiac drug. Key contribution Purification of Ts17 from Tityus serrulatus, electrophysiological characterization of Ts17 on voltage-gated sodium channel subtypes, ß-toxin classification.


Subject(s)
Scorpion Venoms , Voltage-Gated Sodium Channels , Animals , Scorpions/chemistry , Scorpion Venoms/pharmacology , Scorpion Venoms/chemistry , Amino Acid Sequence , Patch-Clamp Techniques
3.
Biochimie ; 204: 118-126, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36116743

ABSTRACT

Scorpion venoms are known as a rich mixture of components, including peptides that can interact with different ion channels, particularly voltage-gated potassium channels (Kv), calcium channels (Cav) and sodium channels (Nav), essential membrane proteins for various physiological functions in organisms. The present work aimed to characterize the modulation of hNa+-channels by Tst1, a peptide purified from the venom of Tityus stigmurus, using whole-cell patch clamp. Tst1 at 100 nM provoked current inhibition in Nav 1.3 (85.23%), Nav 1.2 (67.26%) and Nav 1.4 (63.43%), while Nav 1.1, 1.5, 1.6, and 1.7 were not significantly affected. Tst1 also shifted the voltage of activation and steady-state inactivation to more hyperpolarized states and altered the recovery from inactivation of the channels, reducing repetitive firing of cells, which was more effective in Nav 1.3. Tst1 also demonstrated that the effect on Nav 1.3 is dose-dependent, with an IC50 of 8.79 nM. Taken together, these results confirmed that Tst1, the first Tityus stigmurus NaScTx assayed in relation to Nav channels, is a ß-toxin, as was previously suggested due to its amino acid sequence. KEY CONTRIBUTION: First ß-toxin purified from the venom of Tityus stigmurus scorpion broadly characterized in hNa+-channels.


Subject(s)
Scorpion Venoms , Toxins, Biological , Animals , Scorpions/chemistry , Amino Acid Sequence , Peptides/chemistry , Sodium Channels , Scorpion Venoms/pharmacology , Scorpion Venoms/chemistry
4.
Peptides ; 145: 170622, 2021 11.
Article in English | MEDLINE | ID: mdl-34363923

ABSTRACT

Peptides isolated from spider venoms are of pharmacological interest due to their neurotoxic activity, acting on voltage-dependent ion channels present in different types of human body tissues. Three peptide toxins titled as Ap2, Ap3 and Ap5 were purified by RP-HPLC from Acanthoscurria paulensis venom. They were partially sequenced by MALDI In-source Decay method and their sequences were completed and confirmed by transcriptome analysis of the venom gland. The Ap2, Ap3 and Ap5 peptides have, respectively, 42, 41 and 46 amino acid residues, and experimental molecular masses of 4886.3, 4883.7 and 5454.7 Da, with the Ap2 peptide presenting an amidated C-terminus. Amongst the assayed channels - NaV1.1, NaV1.5, NaV1.7, CaV1.2, CaV2.1 and CaV2.2 - Ap2, Ap3 and Ap5 inhibited 20-30 % of CaV2.1 current at 1 µM concentration. Ap3 also inhibited sodium current in NaV1.1, Nav1.5 and Nav1.7 channels by 6.6 ± 1.91 % (p = 0.0276), 4.2 ± 1.09 % (p = 0.0185) and 16.05 ± 2.75 % (p = 0.0282), respectively. Considering that Ap2, Ap3 and Ap5 belong to the 'U'-unknown family of spider toxins, which has few descriptions of biological activity, the present work contributes to the knowledge of these peptides and demonstrates this potential as channel modulators.


Subject(s)
Agatoxins/isolation & purification , Agatoxins/pharmacology , Spider Venoms/chemistry , Agatoxins/chemistry , Animals , CHO Cells , Calcium Channels, N-Type/metabolism , Cricetulus , HEK293 Cells , Humans , Peptides/chemistry , Peptides/isolation & purification , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Spiders , Voltage-Gated Sodium Channel Blockers/chemistry , Voltage-Gated Sodium Channel Blockers/pharmacology , Voltage-Gated Sodium Channels/genetics , Voltage-Gated Sodium Channels/metabolism
5.
Front Pharmacol ; 11: 1276, 2020.
Article in English | MEDLINE | ID: mdl-33013363

ABSTRACT

Epilepsy is a disease characterized by abnormal brain activity and a predisposition to generate epileptic seizures, leading to neurobiological, cognitive, psychological, social, and economic impacts for the patient. There are several known causes for epilepsy; one of them is the malfunction of ion channels, resulting from mutations. Voltage-gated sodium channels (NaV) play an essential role in the generation and propagation of action potential, and malfunction caused by mutations can induce irregular neuronal activity. That said, several genetic variations in NaV channels have been described and associated with epilepsy. These mutations can affect channel kinetics, modifying channel activation, inactivation, recovery from inactivation, and/or the current window. Among the NaV subtypes related to epilepsy, NaV1.1 is doubtless the most relevant, with more than 1500 mutations described. Truncation and missense mutations are the most observed alterations. In addition, several studies have already related mutated NaV channels with the electrophysiological functioning of the channel, aiming to correlate with the epilepsy phenotype. The present review provides an overview of studies on epilepsy-associated mutated human NaV1.1, NaV1.2, NaV1.3, NaV1.6, and NaV1.7.

6.
Biochim Biophys Acta Biomembr ; 1861(1): 142-150, 2019 01.
Article in English | MEDLINE | ID: mdl-30463697

ABSTRACT

To1, previously named Tc49b, is a peptide neurotoxin isolated from venom of the scorpion Tityus obscurus that is responsible for lethal human poisoning cases in the Brazilian Amazonian region. Previously, To1 was shown to be lethal to mice and to change Na+ permeation in cerebellum granular neurons from rat brain. In addition, To1 did not affect Shaker B K+ channels. Based on sequence similarities, To1 was described as a ß-toxin. In the present work, To1 was purified from T. obscurus venom and submitted to an electrophysiological characterization in human and invertebrate NaV channels. The analysis of the electrophysiological experiments reveal that To1 enhances the open probability at more negative potentials of human NaV 1.3 and 1.6, of the insect channel BgNaV1 and of arachnid VdNaV1 channel. In addition, To1 reduces the peak of Na+ currents in some of the NaVs tested. These results support the classification of the To1 as a ß-toxin. A structure and functional comparison to other ß-toxins that share sequence similarity to To1 is also presented.


Subject(s)
NAV1.3 Voltage-Gated Sodium Channel/chemistry , NAV1.6 Voltage-Gated Sodium Channel/chemistry , Scorpion Venoms/chemistry , Scorpions/chemistry , Sodium Channels/chemistry , Animals , Electrophysiological Phenomena , HEK293 Cells , Humans , Insect Proteins/chemistry , Kinetics , Peptides , Probability , Protein Binding , Sodium/chemistry
7.
Toxins (Basel) ; 10(9)2018 08 22.
Article in English | MEDLINE | ID: mdl-30131471

ABSTRACT

Scorpion venoms are a complex mixture of components. Among them the most important are peptides, which presents the capacity to interact and modulate several ion channel subtypes, including voltage-gated sodium channels (NaV). Screening the activity of scorpion toxins on different subtypes of NaV reveals the scope of modulatory activity and, in most cases, low channel selectivity. Until now there are approximately 60 scorpion toxins experimentally assayed on NaV channels. However, the molecular bases of interaction between scorpion toxins and NaV channels are not fully elucidated. The activity description of new scorpion toxins is crucial to enhance the predictive strength of the structural⁻function correlations of these NaV modulatory molecules. In the present work a new scorpion toxin (Tf1a) was purified from Tityus fasciolatus venom by RP-HPLC, and characterized using electrophysiological experiments on different types of voltage-gated sodium channels. Tf1a was able to modify the normal function of NaV tested, showing to be a typical ß-NaScTx. Tf1a also demonstrated an unusual capability to alter the kinetics of NaV1.5.


Subject(s)
Scorpion Venoms/toxicity , Voltage-Gated Sodium Channels/physiology , Amino Acid Sequence , Animals , Base Sequence , Cell Line , Cricetulus , Humans , Scorpion Venoms/chemistry , Scorpions , Sequence Alignment
8.
Peptides ; 95: 106-115, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28735770

ABSTRACT

Many scorpion toxins that act on sodium channels (NaScTxs) have been characterized till date. These toxins may act modulating the inactivation or the activation of sodium channels and are named α- or ß-types, respectively. Some venom toxins from Tityus obscurus (Buthidae), a scorpion widely distributed in the Brazilian Amazon, have been partially characterized in previous studies; however, little information about their electrophysiological role on sodium ion channels has been published. In the present study, we describe the purification, identification and electrophysiological characterization of a NaScTx, which was first described as Tc54 and further fully sequenced and renamed To4. This toxin shows a marked ß-type effect on different sodium channel subtypes (hNav1.1-hNav1.7) at low concentrations, and has more pronounced activity on hNav1.1, hNav1.2 and hNav1.4. By comparing To4 primary structure with other Tityus ß-toxins which have already been electrophysiologically tested, it is possible to establish some key amino acid residues for the sodium channel activity. Thus, To4 is the first toxin from T. obscurus fully electrophysiologically characterized on different human sodium channel isoforms.


Subject(s)
NAV1.1 Voltage-Gated Sodium Channel/drug effects , NAV1.7 Voltage-Gated Sodium Channel/drug effects , Protein Isoforms/drug effects , Scorpion Venoms/pharmacology , Amino Acid Sequence/drug effects , Animals , Electrophysiology , Humans , NAV1.1 Voltage-Gated Sodium Channel/chemistry , NAV1.7 Voltage-Gated Sodium Channel/chemistry , Protein Isoforms/chemistry , Scorpion Venoms/chemistry , Scorpions/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...