Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38328117

ABSTRACT

Neuroblastoma is a leading cause of death in childhood cancer cases. Unlike adult malignancies, which typically develop from aged cells through accumulated damage and mutagenesis, neuroblastoma originates from neural crest cells with disrupted differentiation. This distinct feature provides novel therapeutic opportunities beyond conventional cytotoxic methods. Previously, we reported that the mitochondrial uncoupler NEN (niclosamide ethanolamine) activated mitochondria respiration to reprogram the epigenome, promoting neuronal differentiation. In the current study, we further combine NEN with retinoic acid (RA) to promote neural differentiation both in vitro and in vivo. The treatment increased the expression of RA signaling and neuron differentiation-related genes, resulting in a global shift in the transcriptome towards a more favorable prognosis. Overall, these results suggest that the combination of a mitochondrial uncoupler and the differentiation agent RA is a promising therapeutic strategy for neuroblastoma.

3.
Cancer Res ; 83(2): 181-194, 2023 01 18.
Article in English | MEDLINE | ID: mdl-36318118

ABSTRACT

The Warburg effect is the major metabolic hallmark of cancer. According to Warburg himself, the consequence of the Warburg effect is cell dedifferentiation. Therefore, reversing the Warburg effect might be an approach to restore cell differentiation in cancer. In this study, we used a mitochondrial uncoupler, niclosamide ethanolamine (NEN), to activate mitochondrial respiration, which induced neural differentiation in neuroblastoma cells. NEN treatment increased the NAD+/NADH and pyruvate/lactate ratios and also the α-ketoglutarate/2-hydroxyglutarate (2-HG) ratio. Consequently, NEN treatment induced promoter CpG island demethylation and epigenetic landscape remodeling, activating the neural differentiation program. In addition, NEN treatment upregulated p53 but downregulated N-Myc and ß-catenin signaling in neuroblastoma cells. Importantly, even under hypoxia, NEN treatment remained effective in inhibiting 2-HG generation, promoting DNA demethylation, and suppressing hypoxia-inducible factor signaling. Dietary NEN intervention reduced tumor growth rate, 2-HG levels, and expression of N-Myc and ß-catenin in tumors in an orthotopic neuroblastoma mouse model. Integrative analysis indicated that NEN treatment upregulated favorable prognosis genes and downregulated unfavorable prognosis genes, which were defined using multiple neuroblastoma patient datasets. Altogether, these results suggest that mitochondrial uncoupling is an effective metabolic and epigenetic therapy for reversing the Warburg effect and inducing differentiation in neuroblastoma. SIGNIFICANCE: Targeting cancer metabolism using the mitochondrial uncoupler niclosamide ethanolamine leads to methylome reprogramming and differentiation in neuroblastoma, providing a therapeutic opportunity to reverse the Warburg effect and suppress tumor growth. See related commentary by Byrne and Bell, p.167.


Subject(s)
Cell Differentiation , Epigenome , Neuroblastoma , Warburg Effect, Oncologic , Animals , Mice , beta Catenin/genetics , Cell Differentiation/genetics , Cell Line, Tumor , Epigenome/genetics , Epigenome/physiology , Ethanolamine/pharmacology , Ethanolamine/therapeutic use , Ethanolamines/therapeutic use , Hypoxia/drug therapy , Neuroblastoma/genetics , Neuroblastoma/pathology , Niclosamide/pharmacology , Warburg Effect, Oncologic/drug effects , Mitochondria/drug effects , Mitochondria/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...