Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Epidemics ; 44: 100711, 2023 09.
Article in English | MEDLINE | ID: mdl-37562182

ABSTRACT

Infectious disease causes significant mortality in wild and farmed systems, threatening biodiversity, conservation and animal welfare, as well as food security. To mitigate impacts and inform policy, tools such as mathematical models and computer simulations are valuable for predicting the potential spread and impact of disease. This paper describes the development of the Aquaculture Disease Network Model, AquaNet-Mod, and demonstrates its application to evaluating disease epidemics and the efficacy of control, using a Viral Haemorrhagic Septicaemia (VHS) case study. AquaNet-Mod is a data-driven, stochastic, state-transition model. Disease spread can occur via four different mechanisms, i) live fish movement, ii) river based, iii) short distance mechanical and iv) distance independent mechanical. Sites transit between three disease states: susceptible, clinically infected and subclinically infected. Disease spread can be interrupted by the application of disease mitigation measures and controls such as contact tracing, culling, fallowing and surveillance. Results from a VHS case study highlight the potential for VHS to spread to 96% of sites over a 10 year time horizon if no disease controls are applied. Epidemiological impact is significantly reduced when live fish movement restrictions are placed on the most connected sites and further still, when disease controls, representative of current disease control policy in England and Wales, are applied. The importance of specific disease control measures, particularly contact tracing and disease detection rate, are also highlighted. The merit of this model for evaluation of disease spread and the efficacy of controls, in the context of policy, along with potential for further application and development of the model, for example to include economic parameters, is discussed.


Subject(s)
Animal Diseases , Fish Diseases , Hemorrhagic Septicemia, Viral , Salmonidae , Animals , Wales/epidemiology , Fish Diseases/epidemiology , Aquaculture/methods , Hemorrhagic Septicemia, Viral/epidemiology , England/epidemiology , Computer Simulation
2.
Mar Pollut Bull ; 181: 113763, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35752508

ABSTRACT

In recent decades, gobies have dispersed or introduced from the Ponto-Caspian region of eastern Europe in a westerly direction to North American and western European waters. By contrast, the naked goby, Gobiosoma bosc, is the only known gobiid species to have been introduced in an easterly direction from North American to western Europe. The potential invasiveness of G. bosc was assessed using the Aquatic Species Invasiveness Screening Kit (AS-ISK) for rivers and transitional waters for the western and eastern sides of the North Sea. Using globally-derived thresholds, G. bosc was assessed as low-medium invasiveness risk for both sides of the North Sea under current climate conditions. Under future climate conditions, potential invasiveness will increase for both risk assessment areas. Environmental suitability assessment indicated an increase in environmental suitability for G. bosc on the eastern coastline of the North Sea under climate change scenarios and suitability remained unchanged on the western coastline, reflecting the authors' expectations of invasiveness risk.


Subject(s)
Perciformes , Animals , Europe , North Sea , Rivers , Seawater
3.
Sci Rep ; 11(1): 7837, 2021 04 09.
Article in English | MEDLINE | ID: mdl-33837248

ABSTRACT

Persistence of wild Pacific oyster, Magallana gigas, also known as Crassostrea gigas, has been increasingly reported across Northern European waters in recent years. While reproduction is inhibited by cold waters, recent warm summer temperature has increased the frequency of spawning events. Although correlation between the increasing abundance of Pacific oyster reefs in Northern European waters and climate change is documented, persistence of wild populations may also be influenced by external recruitment from farmed populations and other wild oyster populations, as well as on competition for resources with aquaculture sites. Our understanding of the combined impact of the spawning frequency, external recruitment, and competition on wild population persistence is limited. This study applied an age-structured model, based on ordinary differential equations, to describe an oyster population under discrete temperature-related dynamics. The impact of more frequent spawning events, external recruitment, and changes in carrying capacity on Pacific oyster density were simulated and compared under theoretical scenarios and two case studies in Southern England. Results indicate that long term persistence of wild oyster populations towards carrying capacity requires a high frequency of spawning events but that in the absence of spawning, external recruitment from farmed populations and other wild oyster populations may act to prevent extinction and increase population density. However, external recruitment sources may be in competition with the wild population so that external recruitment is associated with a reduction in wild population density. The implications of model results are discussed in the context of wild oyster population management.


Subject(s)
Aquaculture , Climate Change , Crassostrea/physiology , Extinction, Biological , Hot Temperature , Animals , Ecosystem , England , Larva , Models, Biological , Population Dynamics , Reproduction , Shellfish
4.
J Fish Dis ; 41(11): 1625-1630, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30091241

ABSTRACT

Disease poses a major threat to aquaculture and commercial and recreational fisheries globally. Biosecurity measures have been implemented; however, empirical evidence of their efficacy in situ is lacking. Here, we present the results from a study conducted to examine the effectiveness of disinfectant net dips. Samples were collected from disinfectant net dips at 25 recreational fisheries in south-west England and assessed to determine (a) the level of bacterial contamination and (b) the reduction in titre of a target virus (infectious pancreatic necrosis virus, IPNV) following a contact time of 2 and 5 min. In addition, the study examined the reduction in target virus titre following exposure to laboratory prepared Virkon® , representing "clean," "dirty" and "diluted and dirty" conditions, for 2 and 5 min. Bacterial contamination was high in 64% of disinfectant samples, and, 76% of disinfectant samples did not effectively reduce the target virus titre in 2 or 5 min. Virus titre was successfully reduced following exposure to laboratory prepared Virkon® for 2 or 5 min, although dilution and contamination reduced the effectiveness. These results suggest that disinfectant net dips may not be working effectively on a high proportion of fishery sites. We provide recommendations for improving biosecurity.


Subject(s)
Bacterial Infections/veterinary , Birnaviridae Infections/veterinary , Disinfectants/standards , Equipment and Supplies/veterinary , Fish Diseases/prevention & control , Fisheries , Animals , Bacteria/drug effects , Bacterial Infections/microbiology , Bacterial Infections/prevention & control , Birnaviridae Infections/prevention & control , Birnaviridae Infections/virology , Disinfectants/pharmacology , England , Equipment and Supplies/microbiology , Fish Diseases/microbiology , Fish Diseases/virology , Infectious pancreatic necrosis virus/drug effects
5.
Proc Biol Sci ; 279(1746): 4505-12, 2012 Nov 07.
Article in English | MEDLINE | ID: mdl-22977154

ABSTRACT

Exposure to low doses of pathogens that do not result in the host becoming infectious may 'prime' the immune response and increase protection to subsequent challenge. There is increasing evidence that such immune priming is a widespread and important feature of invertebrate host-pathogen interactions. Immune priming clearly has implications for individual hosts but will also have population-level implications. We present a susceptible-primed-infectious model-in contrast to the classic susceptible-infectious-recovered framework-to investigate the impacts of immune priming on pathogen persistence and population stability. We describe impacts of immune priming on the epidemiology of the disease in both constant and seasonal environments. A key result is that immune priming may act to destabilize population dynamics. In particular, when the proportion of individuals becoming primed rather than infected is high, but this priming does not confer full immunity, the population may be strongly destabilized through the generation of limit cycles. We discuss the implications of our model both in the context of invertebrate immunity and more widely.


Subject(s)
Disease Susceptibility , Host-Pathogen Interactions , Immunologic Memory , Animals , Immunity, Innate , Models, Biological , Population Dynamics
6.
Proc Biol Sci ; 278(1707): 871-6, 2011 Mar 22.
Article in English | MEDLINE | ID: mdl-20861049

ABSTRACT

Invertebrates mount a sophisticated immune response with the potential to exhibit a form of immune memory through 'priming'. Increased immune protection following early exposure to bacteria has been found both later in life (within generation priming) and in the next generation (transgeneration priming) in a number of invertebrates. However, it is unclear how general immune priming is and whether immune priming occurs in response to different parasites, including viruses. Here, using Plodia interpuctella (Lepidoptera) and its natural DNA virus, Plodia interpunctella granulosis virus, we find evidence for both within generation and transgeneration immune priming. Individuals previously exposed to low doses of virus, as well as the offspring of exposed individuals, are subsequently less susceptible to viral challenge. Relatively little is known about the mechanisms that underpin viral immunity but it is probable that the viral immune response is somewhat different to that of bacteria. We show that immune priming may, however, be a characteristic of both responses, mediated through different mechanisms, suggesting that immune memory may be a general phenomenon of insect immunity. This is important because immune priming may influence both host-parasite population and evolutionary dynamics.


Subject(s)
Granulovirus/immunology , Moths/immunology , Animals , Immunity, Innate , Immunologic Memory , Moths/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...