Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 616-617: 187-197, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29112842

ABSTRACT

This constitutes the first study to address occurrence and geodatabase mapping of the anti-inflammatory drug diclofenac (DCL) and the natural (17-beta-estradiol or E2) and synthetic (17-alpha-ethynylestradiol or EE2) estrogenic hormones in Republic of Ireland receiving waters over the period 1999 to 2015. Among these data, 317 samples came from concentration studies, while 205 were from effect-based studies. Monitoring data came from 16 waste water treatment plants (WWTPs), 23 water bodies (including rivers, lakes, marine and transitional waters) and 7 from domestic locations. Out of approximately 1000 WWPTs in the Republic of Ireland, only 16 have been monitored for at least one of these compounds of emerging concern (CECs). Diclofenac is found in treated effluents from 5 WWTPs at levels at least as high as other European WWPTs, and sometime higher. Measurements of E2 and EE2 in WWPT effluents were rare and effluents were more often evaluated for total estrogens; these CECs were generally not detected using conventional analytical methods because of limits of detection being too high compared to environmental concentrations and WFD environmental quality standards. There was good agreement between occurrence of these CEC and regional drug dispensing data in Ireland. Mapping the aforementioned data onto appropriate river basin catchment management tools will inform predictive and simulated risk determinations to inform investment in infrastructure that is necessary to protect rivers and beaches and economic activities that rely on clean water. There is a pressing commensurate need to refine/develop new analytical methods with low levels of detection for future CEC intervention.

2.
Sci Total Environ ; 603-604: 627-638, 2017 Dec 15.
Article in English | MEDLINE | ID: mdl-28654878

ABSTRACT

Contamination of receiving waters with pharmaceutical compounds is of pressing concern. This constitutes the first study to report on the development of a semi-quantitative risk assessment (RA) model for evaluating the environmental threat posed by three EU watch list pharmaceutical compounds namely, diclofenac, 17-beta-estradiol and 17-alpha-ethinylestradiol, to aquatic ecosystems using Irish data as a case study. This RA model adopts the Irish Environmental Protection Agency Source-Pathway-Receptor concept to define relevant parameters for calculating low, medium or high risk score for each agglomeration of wastewater treatment plant (WWTP), which include catchment, treatments, operational and management factors. This RA model may potentially be used on a national scale to (i) identify WWTPs that pose a particular risk as regards releasing disproportionally high levels of these pharmaceutical compounds, and (ii) help identify priority locations for introducing or upgrading control measures (e.g. tertiary treatment, source reduction). To assess risks for these substances of emerging concern, the model was applied to 16 urban WWTPs located in different regions in Ireland that were scored for the three different compounds and ranked as low, medium or high risk. As a validation proxy, this case study used limited monitoring data recorded at some these plants receiving waters. It is envisaged that this semi-quantitative RA approach may aid other EU countries investigate and screen for potential risks where limited measured or predicted environmental pollutant concentrations and/or hydrological data are available. This model is semi-quantitative, as other factors such as influence of climate change and drug usage or prescription data will need to be considered in a future point for estimating and predicting risks.


Subject(s)
Environmental Monitoring , Pharmaceutical Preparations/analysis , Risk Assessment , Waste Disposal, Fluid , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Ireland
3.
Sci Total Environ ; 574: 1140-1163, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-27741430

ABSTRACT

Pollution of European receiving waters with contaminants of emerging concern (CECs), such as with 17-beta-estradiol (a natural estrogenic hormone, E2), along with pharmaceutically-active compounds diclofenac (an anti-inflammatory drug, DCL) and 17-alpha-ethynylestradiol (a synthetic estrogenic hormone, EE2)) is a ubiquitous phenomenon. These three CECs were added to the EU watch list of emerging substances to be monitoring in 2013, which was updated in 2015 to comprise 10 substances/groups of substances in the field of water policy. A systematic literature review was conducted of 3952 potentially relevant articles over period 1995 to 2015 that produced a new EU-wide database consisting of 1268 publications on DCL, E2 and EE2. European surface water concentrations of DCL are typically reported below the proposed annual average environmental quality standard (AA EQS) of 100ng/l, but that exceedances frequently occur. E2 and EE2 surface water concentrations are typically below 50ng/l and 10ng/l respectively, but these values greatly exceed the proposed AA EQS values for these compounds (0.04 and 0.035ng/l respectively). However, levels of these CECs are frequently reported to be disproportionately high in EU receiving waters, particularly in effluents at control points that require urgent attention. Overall it was found that DCL and EE2 enter European aquatic environment mainly following human consumption and excretion of therapeutic drugs, and by incomplete removal from influent at urban wastewater treatment plants (WWTPs). E2 is a natural hormone excreted by humans which also experiences incomplete removal during WWTPs treatment. Current conventional analytical chemistry methods are sufficiently sensitive for the detection and quantification of DCL but not for E2 and EE2, thus alternative, ultra-trace, time-integrated monitoring techniques such as passive sampling are needed to inform water quality for these estrogens. DCL appears resistant to conventional wastewater treatment while E2 and EE2 have high removal efficiencies that occur through biodegradation or sorption to organic matter. There is a pressing need to determine fate and behaviour of these CECs in European receiving waters such as using GIS-modelling of river basins as this will identify pressure points for informing priority decision making and alleviation strategies for upgrade of WWTPs and for hospital effluents with advanced treatment technologies. More monitoring data for these CECs in receiving waters is urgently needed for EU legislation and effective risk management.


Subject(s)
Environmental Monitoring , Waste Disposal, Fluid , Water Pollutants, Chemical/analysis , Estrogens/analysis , Ethinyl Estradiol/analysis , European Union , Humans , Wastewater
5.
Nature ; 521(7550): 74-76, 2015 May 07.
Article in English | MEDLINE | ID: mdl-25901684

ABSTRACT

The impact of neonicotinoid insecticides on insect pollinators is highly controversial. Sublethal concentrations alter the behaviour of social bees and reduce survival of entire colonies. However, critics argue that the reported negative effects only arise from neonicotinoid concentrations that are greater than those found in the nectar and pollen of pesticide-treated plants. Furthermore, it has been suggested that bees could choose to forage on other available flowers and hence avoid or dilute exposure. Here, using a two-choice feeding assay, we show that the honeybee, Apis mellifera, and the buff-tailed bumblebee, Bombus terrestris, do not avoid nectar-relevant concentrations of three of the most commonly used neonicotinoids, imidacloprid (IMD), thiamethoxam (TMX), and clothianidin (CLO), in food. Moreover, bees of both species prefer to eat more of sucrose solutions laced with IMD or TMX than sucrose alone. Stimulation with IMD, TMX and CLO neither elicited spiking responses from gustatory neurons in the bees' mouthparts, nor inhibited the responses of sucrose-sensitive neurons. Our data indicate that bees cannot taste neonicotinoids and are not repelled by them. Instead, bees preferred solutions containing IMD or TMX, even though the consumption of these pesticides caused them to eat less food overall. This work shows that bees cannot control their exposure to neonicotinoids in food and implies that treating flowering crops with IMD and TMX presents a sizeable hazard to foraging bees.


Subject(s)
Bees/physiology , Diet/veterinary , Food Preferences , Insecticides/analysis , Plant Nectar/chemistry , Animals , Bees/drug effects , Chemoreceptor Cells/drug effects , Chemoreceptor Cells/metabolism , Female , Flowers/chemistry , Flowers/drug effects , Food Preferences/drug effects , Guanidines/adverse effects , Guanidines/analysis , Guanidines/pharmacology , Imidazoles/adverse effects , Imidazoles/analysis , Imidazoles/pharmacology , Insecticides/adverse effects , Insecticides/pharmacology , Male , Neonicotinoids , Nitro Compounds/adverse effects , Nitro Compounds/analysis , Nitro Compounds/pharmacology , Oxazines/adverse effects , Oxazines/analysis , Oxazines/pharmacology , Pollen/chemistry , Pollination , Reproduction/drug effects , Reproduction/physiology , Survival Analysis , Taste/physiology , Thiamethoxam , Thiazoles/adverse effects , Thiazoles/analysis , Thiazoles/pharmacology
6.
PLoS One ; 10(3): e0119733, 2015.
Article in English | MEDLINE | ID: mdl-25764085

ABSTRACT

Invasive alien plants can compete with native plants for resources, and may ultimately decrease native plant diversity and/or abundance in invaded sites. This could have consequences for native mutualistic interactions, such as pollination. Although invasive plants often become highly connected in plant-pollinator interaction networks, in temperate climates they usually only flower for part of the season. Unless sufficient alternative plants flower outside this period, whole-season floral resources may be reduced by invasion. We hypothesized that the cessation of flowering of a dominant invasive plant would lead to dramatic, seasonal compositional changes in plant-pollinator communities, and subsequent changes in network structure. We investigated variation in floral resources, flower-visiting insect communities, and interaction networks during and after the flowering of invasive Rhododendron ponticum in four invaded Irish woodland sites. Floral resources decreased significantly after R. ponticum flowering, but the magnitude of the decrease varied among sites. Neither insect abundance nor richness varied between the two periods (during and after R. ponticum flowering), yet insect community composition was distinct, mostly due to a significant reduction in Bombus abundance after flowering. During flowering R. ponticum was frequently visited by Bombus; after flowering, these highly mobile pollinators presumably left to find alternative floral resources. Despite compositional changes, however, network structural properties remained stable after R. ponticum flowering ceased: generality increased, but quantitative connectance, interaction evenness, vulnerability, H'2 and network size did not change. This is likely because after R. ponticum flowering, two to three alternative plant species became prominent in networks and insects increased their diet breadth, as indicated by the increase in network-level generality. We conclude that network structure is robust to seasonal changes in floral abundance at sites invaded by alien, mass-flowering plant species, as long as alternative floral resources remain throughout the season to support the flower-visiting community.


Subject(s)
Flowers/physiology , Insecta/physiology , Pollination , Rhododendron/physiology , Animals
7.
J Exp Biol ; 217(Pt 9): 1620-5, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24526720

ABSTRACT

Bees visit flowers to collect nectar and pollen that contain nutrients and simultaneously facilitate plant sexual reproduction. Paradoxically, nectar produced to attract pollinators often contains deterrent or toxic plant compounds associated with herbivore defence. The functional significance of these nectar toxins is not fully understood, but they may have a negative impact on pollinator behaviour and health, and, ultimately, plant pollination. This study investigates whether a generalist bumblebee, Bombus terrestris, can detect naturally occurring concentrations of nectar toxins. Using paired-choice experiments, we identified deterrence thresholds for five compounds found in the nectar of bee-pollinated plants: quinine, caffeine, nicotine, amygdalin and grayanotoxin. The deterrence threshold was determined when bumblebees significantly preferred a sucrose solution over a sucrose solution containing the compound. Bumblebees had the lowest deterrence threshold for the alkaloid quinine (0.01 mmol l(-1)); all other compounds had higher deterrence thresholds, above the natural concentration range in floral nectar. Our data, combined with previous work using honeybees, suggest that generalist bee species have poor acuity for the detection of nectar toxins. The fact that bees do not avoid nectar-relevant concentrations of these compounds likely indicates that it is difficult for them to learn to associate floral traits with the presence of toxins, thus maintaining this trait in plant populations.


Subject(s)
Bees/physiology , Feeding Behavior/physiology , Plant Nectar/chemistry , Alkaloids/pharmacology , Amygdalin/pharmacology , Animals , Diterpenes/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...