Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
1.
Hum Mol Genet ; 32(24): 3323-3341, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37676252

ABSTRACT

GM3 Synthase Deficiency (GM3SD) is a neurodevelopmental disorder resulting from pathogenic variants in the ST3GAL5 gene, which encodes GM3 synthase, a glycosphingolipid (GSL)-specific sialyltransferase. This enzyme adds a sialic acid to the terminal galactose of lactosylceramide (LacCer) to produce the monosialylated ganglioside GM3. In turn, GM3 is extended by other glycosyltransferases to generate nearly all the complex gangliosides enriched in neural tissue. Pathogenic mechanisms underlying the neural phenotypes associated with GM3SD are unknown. To explore how loss of GM3 impacts neural-specific glycolipid glycosylation and cell signaling, GM3SD patient fibroblasts bearing one of two different ST3GAL5 variants were reprogrammed to induced pluripotent stem cells (iPSCs) and then differentiated to neural crest cells (NCCs). GM3 and GM3-derived gangliosides were undetectable in cells carrying either variant, while LacCer precursor levels were elevated compared to wildtype (WT). NCCs of both variants synthesized elevated levels of neutral lacto- and globo-series, as well as minor alternatively sialylated GSLs compared to WT. Ceramide profiles were also shifted in GM3SD variant cells. Altered GSL profiles in GM3SD cells were accompanied by dynamic changes in the cell surface proteome, protein O-GlcNAcylation, and receptor tyrosine kinase abundance. GM3SD cells also exhibited increased apoptosis and sensitivity to erlotinib-induced inhibition of epidermal growth factor receptor signaling. Pharmacologic inhibition of O-GlcNAcase rescued baseline and erlotinib-induced apoptosis. Collectively, these findings indicate aberrant cell signaling during differentiation of GM3SD iPSCs and also underscore the challenge of distinguishing between variant effect and genetic background effect on specific phenotypic consequences.


Subject(s)
Gangliosides , Glycosphingolipids , Humans , Erlotinib Hydrochloride , Glycosphingolipids/metabolism , G(M3) Ganglioside/genetics , G(M3) Ganglioside/metabolism , Sialyltransferases/genetics , Sialyltransferases/metabolism , Signal Transduction
2.
JIMD Rep ; 64(2): 138-145, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36873089

ABSTRACT

GM3 synthase deficiency (GM3SD) is caused by biallelic variants in ST3GAL5. The ganglioside GM3, enriched in neuronal tissues, is a component of lipid rafts and regulates numerous signaling pathways. Affected individuals with GM3SD exhibit global developmental delay, progressive microcephaly, and dyskinetic movements. Hearing loss and altered skin pigmentation are also common. Most of the reported variants in ST3GAL5 are found in motifs conserved across all sialyltransferases within the GT29 family of enzymes. These motifs include motif L and motif S which contain amino acids responsible for substrate binding. These loss-of-function variants cause greatly reduced biosynthesis of GM3 and gangliosides derived from GM3. Here we describe an affected female with typical GM3SD features bearing two novel variants that reside in the other two conserved sialyltransferase motifs (motif 3 and motif VS). These missense alterations occur in amino acid residues that are strictly invariant across the entire GT29 family of sialyltransferases. The functional significance of these variants was confirmed by mass spectrometric analysis of plasma glycolipids, demonstrating a striking loss of GM3 and accumulation of lactosylceramide and Gb3 in the patient. The glycolipid profile changes were accompanied by an increase in ceramide chain length on LacCer. No changes in receptor tyrosine phosphorylation were observed in patient-derived lymphoblasts, indicating that GM3 synthase loss-of-function in this cell type does not impact receptor tyrosine kinase activity. These findings demonstrate the high prevalence of loss-of-function ST3GAL5 variants within highly conserved sialyltransferase motifs in affected individuals with GM3SD.

3.
Elife ; 122023 03 22.
Article in English | MEDLINE | ID: mdl-36946697

ABSTRACT

Modification by sialylated glycans can affect protein functions, underlying mechanisms that control animal development and physiology. Sialylation relies on a dedicated pathway involving evolutionarily conserved enzymes, including CMP-sialic acid synthetase (CSAS) and sialyltransferase (SiaT) that mediate the activation of sialic acid and its transfer onto glycan termini, respectively. In Drosophila, CSAS and DSiaT genes function in the nervous system, affecting neural transmission and excitability. We found that these genes function in different cells: the function of CSAS is restricted to glia, while DSiaT functions in neurons. This partition of the sialylation pathway allows for regulation of neural functions via a glia-mediated control of neural sialylation. The sialylation genes were shown to be required for tolerance to heat and oxidative stress and for maintenance of the normal level of voltage-gated sodium channels. Our results uncovered a unique bipartite sialylation pathway that mediates glia-neuron coupling and regulates neural excitability and stress tolerance.


Subject(s)
Drosophila , Nervous System Physiological Phenomena , Animals , Drosophila/metabolism , Synaptic Transmission/physiology , Neurons/metabolism , Neuroglia/metabolism , Polysaccharides/metabolism
4.
NPJ Biofilms Microbiomes ; 9(1): 11, 2023 03 23.
Article in English | MEDLINE | ID: mdl-36959210

ABSTRACT

Human microbiome composition is closely tied to health, but how the host manages its microbial inhabitants remains unclear. One important, but understudied, factor is the natural host environment: mucus, which contains gel-forming glycoproteins (mucins) that display hundreds of glycan structures with potential regulatory function. Leveraging a tractable culture-based system to study how mucins influence oral microbial communities, we found that mucin glycans enable the coexistence of diverse microbes, while resisting disease-associated compositional shifts. Mucins from tissues with unique glycosylation differentially tuned microbial composition, as did isolated mucin glycan libraries, uncovering the importance of specific glycan patterns in microbiome modulation. We found that mucins shape microbial communities in several ways: serving as nutrients to support metabolic diversity, organizing spatial structure through reduced aggregation, and possibly limiting antagonism between competing taxa. Overall, this work identifies mucin glycans as a natural host mechanism and potential therapeutic intervention to maintain healthy microbial communities.


Subject(s)
Microbiota , Mucins , Humans , Mucins/chemistry , Mucins/metabolism , Glycosylation , Mucus/metabolism , Polysaccharides/metabolism
5.
Glycobiology ; 33(5): 354-357, 2023 06 03.
Article in English | MEDLINE | ID: mdl-36799723

ABSTRACT

Recent technological advances in glycobiology have resulted in a large influx of data and the publication of many papers describing discoveries in glycoscience. However, the terms used in describing glycan structural features are not standardized, making it difficult to harmonize data across biomolecular databases, hampering the harvesting of information across studies and hindering text mining and curation efforts. To address this shortcoming, the Glycan Structure Dictionary has been developed as a reference dictionary to provide a standardized list of widely used glycan terms that can help in the curation and mapping of glycan structures described in publications. Currently, the dictionary has 190 glycan structure terms with 297 synonyms linked to 3,332 publications. For a term to be included in the dictionary, it must be present in at least 2 peer-reviewed publications. Synonyms, annotations, and cross-references to GlyTouCan, GlycoMotif, and other relevant databases and resources are also provided when available. The purpose of this effort is to facilitate biocuration, assist in the development of text mining tools, improve the harmonization of search, and browse capabilities in glycoinformatics resources and help to map glycan structures to function and disease. It is also expected that authors will use these terms to describe glycan structures in their manuscripts over time. A mechanism is also provided for researchers to submit terms for potential incorporation. The dictionary is available at https://wiki.glygen.org/Glycan_structure_dictionary.


Subject(s)
Data Mining , Polysaccharides , Data Mining/methods , Databases, Factual , Polysaccharides/chemistry , Glycomics/methods
6.
JACS Au ; 3(1): 4-12, 2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36711080

ABSTRACT

The GlySpace Alliance was formed in 2018 among the principal investigators of three major glycoscience portals: Glyco@Expasy, GlyCosmos, and GlyGen, representing Europe, Asia, and the United States, respectively. While each of these portals has its unique user interface, the aim is to provide the same basic data set of glycan-related omics data. These portals will be introduced with the aim to enable users to find their target information in the most efficient manner, in particular, in terms of the chemical structures of glycans and their functions.

7.
EMBO J ; 42(3): e111562, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36504455

ABSTRACT

Pandemic and endemic strains of Vibrio cholerae arise from toxigenic conversion by the CTXφ bacteriophage, a process by which CTXφ infects nontoxigenic strains of V. cholerae. CTXφ encodes the cholera toxin, an enterotoxin responsible for the watery diarrhea associated with cholera infections. Despite the critical role of CTXφ during infections, signals that affect CTXφ-driven toxigenic conversion or expression of the CTXφ-encoded cholera toxin remain poorly characterized, particularly in the context of the gut mucosa. Here, we identify mucin polymers as potent regulators of CTXφ-driven pathogenicity in V. cholerae. Our results indicate that mucin-associated O-glycans block toxigenic conversion by CTXφ and suppress the expression of CTXφ-related virulence factors, including the toxin co-regulated pilus and cholera toxin, by interfering with the TcpP/ToxR/ToxT virulence pathway. By synthesizing individual mucin glycan structures de novo, we identify the Core 2 motif as the critical structure governing this virulence attenuation. Overall, our results highlight a novel mechanism by which mucins and their associated O-glycan structures affect CTXφ-mediated evolution and pathogenicity of V. cholerae, underscoring the potential regulatory power housed within mucus.


Subject(s)
Bacteriophages , Cholera Toxin , Mucins , Vibrio cholerae , Virulence , Bacteriophages/genetics , Bacteriophages/pathogenicity , Cholera Toxin/genetics , Cholera Toxin/metabolism , Mucins/genetics , Mucins/metabolism , Vibrio cholerae/genetics , Vibrio cholerae/metabolism , Virulence/genetics , Virulence/physiology , Polysaccharides/genetics , Polysaccharides/metabolism
8.
Mol Genet Metab ; 137(4): 342-348, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36335793

ABSTRACT

GM3 synthase (GM3S) deficiency is a rare neurodevelopmental disorder caused by an inability to synthesize gangliosides, for which there is currently no treatment. Gangliosides are brain-enriched, plasma membrane glycosphingolipids with poorly understood biological functions related to cell adhesion, growth, and receptor-mediated signal transduction. Here, we investigated the effects of GM3S deficiency on metabolism and mitochondrial function in a mouse model. By indirect calorimetry, GM3S knockout mice exhibited increased whole-body respiration and an increased reliance upon carbohydrate as an energy source. 18F-FDG PET confirmed higher brain glucose uptake in knockout mice, and GM3S deficient N41 neuronal cells showed higher glucose utilization in vitro. Brain mitochondria from knockout mice respired at a higher rate on Complex I substrates including pyruvate. This appeared to be due to higher expression of pyruvate dehydrogenase (PDH) and lower phosphorylation of PDH, which would favor pyruvate entry into the mitochondrial TCA cycle. Finally, it was observed that blocking glucose metabolism with the glycolysis inhibitor 2-deoxyglucose reduced seizure intensity in GM3S knockout mice following administration of kainate. In conclusion, GM3S deficiency may be associated with a hypermetabolic phenotype that could promote seizure activity.


Subject(s)
Glucose , Sialyltransferases , Animals , Mice , Brain/diagnostic imaging , Brain/metabolism , G(M3) Ganglioside/metabolism , Glucose/metabolism , Mice, Knockout , Pyruvic Acid , Seizures/genetics , Sialyltransferases/genetics , Sialyltransferases/metabolism
9.
Nat Chem Biol ; 18(7): 762-773, 2022 07.
Article in English | MEDLINE | ID: mdl-35668191

ABSTRACT

Mucins are large gel-forming polymers inside the mucus barrier that inhibit the yeast-to-hyphal transition of Candida albicans, a key virulence trait of this important human fungal pathogen. However, the molecular motifs in mucins that inhibit filamentation remain unclear despite their potential for therapeutic interventions. Here, we determined that mucins display an abundance of virulence-attenuating molecules in the form of mucin O-glycans. We isolated and cataloged >100 mucin O-glycans from three major mucosal surfaces and established that they suppress filamentation and related phenotypes relevant to infection, including surface adhesion, biofilm formation and cross-kingdom competition between C. albicans and the bacterium Pseudomonas aeruginosa. Using synthetic O-glycans, we identified three structures (core 1, core 1 + fucose and core 2 + galactose) that are sufficient to inhibit filamentation with potency comparable to the complex O-glycan pool. Overall, this work identifies mucin O-glycans as host molecules with untapped therapeutic potential to manage fungal pathogens.


Subject(s)
Candida albicans , Mucins , Fucose , Mucins/chemistry , Polysaccharides/chemistry , Virulence
10.
J Biol Chem ; 298(6): 101960, 2022 06.
Article in English | MEDLINE | ID: mdl-35452678

ABSTRACT

Alzheimer's disease (AD) is characterized by accumulation of misfolded proteins. Genetic studies implicate microglia, brain-resident phagocytic immune cells, in AD pathogenesis. As positive effectors, microglia clear toxic proteins, whereas as negative effectors, they release proinflammatory mediators. An imbalance of these functions contributes to AD progression. Polymorphisms of human CD33, an inhibitory microglial receptor, are linked to AD susceptibility; higher CD33 expression correlates with increased AD risk. CD33, also called Siglec-3, is a member of the sialic acid-binding immunoglobulin-type lectin (Siglec) family of immune regulatory receptors. Siglec-mediated inhibition is initiated by binding to complementary sialoglycan ligands in the tissue environment. Here, we identify a single sialoglycoprotein in human cerebral cortex that binds CD33 as well as Siglec-8, the most abundant Siglec on human microglia. The ligand, which we term receptor protein tyrosine phosphatase zeta (RPTPζ)S3L, is composed of sialylated keratan sulfate chains carried on a minor isoform/glycoform of RPTPζ (phosphacan) and is found in the extracellular milieu of the human brain parenchyma. Brains from human AD donors had twofold higher levels of RPTPζS3L than age-matched control donors, raising the possibility that RPTPζS3L overexpression limits misfolded protein clearance contributing to AD pathology. Mice express the same structure, a sialylated keratan sulfate RPTPζ isoform, that binds mouse Siglec-F and crossreacts with human CD33 and Siglec-8. Brains from mice engineered to lack RPTPζ, the sialyltransferase St3gal4, or the keratan sulfate sulfotransferase Chst1 lacked Siglec binding, establishing the ligand structure. The unique CD33 and Siglec-8 ligand, RPTPζS3L, may contribute to AD progression.


Subject(s)
Alzheimer Disease , Sialic Acid Binding Immunoglobulin-like Lectins , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Animals , Brain/metabolism , Humans , Keratan Sulfate/metabolism , Ligands , Mice , Microglia/metabolism , Protein Isoforms/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 5/metabolism , Sialic Acid Binding Ig-like Lectin 3/genetics , Sialic Acid Binding Ig-like Lectin 3/metabolism , Sialic Acid Binding Immunoglobulin-like Lectins/genetics , Sialic Acid Binding Immunoglobulin-like Lectins/metabolism
11.
Sci Adv ; 8(13): eabm9718, 2022 04.
Article in English | MEDLINE | ID: mdl-35363522

ABSTRACT

Cystic fibrosis (CF) is characterized by abnormal transepithelial ion transport. However, a description of CF lung disease pathophysiology unifying superficial epithelial and submucosal gland (SMG) dysfunctions has remained elusive. We hypothesized that biophysical abnormalities associated with CF mucus hyperconcentration provide a unifying mechanism. Studies of the anion secretion-inhibited pig airway model of CF revealed elevated SMG mucus concentrations, osmotic pressures, and SMG mucus accumulation. Human airway studies revealed hyperconcentrated CF SMG mucus with raised osmotic pressures and cohesive forces predicted to limit SMG mucus secretion/release. Using proline-rich protein 4 (PRR4) as a biomarker of SMG secretion, CF sputum proteomics analyses revealed markedly lower PRR4 levels compared to healthy and bronchiectasis controls, consistent with a failure of CF SMGs to secrete mucus onto airway surfaces. Raised mucus osmotic/cohesive forces, reflecting mucus hyperconcentration, provide a unifying mechanism that describes disease-initiating mucus accumulation on airway surfaces and in SMGs of the CF lung.


Subject(s)
Cystic Fibrosis , Animals , Cystic Fibrosis/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Mucus/metabolism , Respiratory System/metabolism , Sputum/metabolism , Swine
12.
Am J Respir Cell Mol Biol ; 67(2): 253-265, 2022 08.
Article in English | MEDLINE | ID: mdl-35486871

ABSTRACT

The dynamics describing the vicious cycle characteristic of cystic fibrosis (CF) lung disease, initiated by stagnant mucus and perpetuated by infection and inflammation, remain unclear. Here we determine the effect of the CF airway milieu, with persistent mucoobstruction, resident pathogens, and inflammation, on the mucin quantity and quality that govern lung disease pathogenesis and progression. The concentrations of MUC5AC and MUC5B were measured and characterized in sputum samples from subjects with CF (N = 44) and healthy subjects (N = 29) with respect to their macromolecular properties, degree of proteolysis, and glycomics diversity. These parameters were related to quantitative microbiome and clinical data. MUC5AC and MUC5B concentrations were elevated, 30- and 8-fold, respectively, in CF as compared with control sputum. Mucin parameters did not correlate with hypertonic saline, inhaled corticosteroids, or antibiotics use. No differences in mucin parameters were detected at baseline versus during exacerbations. Mucin concentrations significantly correlated with the age and sputum human neutrophil elastase activity. Although significantly more proteolytic cleavages were detected in CF mucins, their macromolecular properties (e.g., size and molecular weight) were not significantly different than control mucins, likely reflecting the role of S-S bonds in maintaining multimeric structures. No evidence of giant mucin macromolecule reflecting oxidative stress-induced cross-linking was found. Mucin glycomic analysis revealed significantly more sialylated glycans in CF, and the total abundance of nonsulfated O-glycans correlated with the relative abundance of pathogens. Collectively, the interaction of mucins, pathogens, epithelium, and inflammatory cells promotes proteomic and glycomic changes that reflect a persistent mucoobstructive, infectious, and inflammatory state.


Subject(s)
Cystic Fibrosis , Cystic Fibrosis/pathology , Humans , Inflammation , Mucin 5AC , Mucin-5B , Mucus , Proteomics , Respiratory System/pathology
13.
Front Mol Biosci ; 8: 778383, 2021.
Article in English | MEDLINE | ID: mdl-34859056

ABSTRACT

Recent advances in carbohydrate chemistry, chemical biology, and mass spectrometric techniques have opened the door to rapid progress in uncovering the function and diversity of glycan structures associated with human health and disease. These strategies can be equally well applied to advance non-human health care research. To date, the glycomes of only a handful of non-human, non-domesticated vertebrates have been analyzed in depth due to the logistic complications associated with obtaining or handling wild-caught or farm-raised specimens. In contrast, the last 2 decades have seen advances in proteomics, glycoproteomics, and glycomics that have significantly advanced efforts to identify human serum/plasma biomarkers for various diseases. In this study, we investigated N-glycan structural diversity in serum harvested from five cultured fish species. This biofluid is a useful starting point for glycomic analysis because it is rich in glycoproteins, can be acquired in a sustainable fashion, and its contents reflect dynamic physiologic changes in the organism. Sera acquired from two chondrostrean fish species, the Atlantic sturgeon and shortnose sturgeon, and three teleost fish species, the Atlantic salmon, Arctic char, and channel catfish, were delipidated by organic extraction and the resulting protein-rich preparations sequentially treated with trypsin and PNGaseF to generate released N-glycans for structural analysis. Released N-glycans were analyzed as their native or permethylated forms by nanospray ionization mass spectrometry in negative or positive mode. While the basic biosynthetic pathway that initiates the production of glycoprotein glycan core structures is well-conserved across the teleost fish species examined in this study, species-specific structural differences were detected across the five organisms in terms of their monosaccharide composition, sialylation pattern, fucosylation, and degree of O-acetylation. Our methods and results provide new contributions to a growing library of datasets describing fish N-glycomes that can eventually establish species-normative baselines for assessing N-glycosylation dynamics associated with pathogen invasion, environmental stress, and fish immunologic responses.

14.
FASEB J ; 35(8): e21818, 2021 08.
Article in English | MEDLINE | ID: mdl-34320241

ABSTRACT

Fabry disease results from a deficiency of the lysosomal enzyme ⍺-Galactosidase-A (⍺-Gal A) and is estimated to occur in approximately 1:4100 live births. Characteristic of the disease is the accumulation of α-Gal-A substrates, primarily the glycosphingolipids (GSLs) globotriaosylceramide and globotriaosylsphingosine. Thrombotic events are a significant concern for Fabry patients, with strokes contributing to a significant decrease in overall lifespan. Currently, the mechanisms underlying the increased risk of thrombotic events experienced by Fabry patients are incompletely defined. Using a rat model of Fabry disease, we provide an improved understanding of the mechanisms linking GSL accumulation to thrombotic risk. We found that ⍺-Gal A-deficient rats accumulate myeloid-derived leukocytes at sites of GSL accumulation, including in the bone marrow and circulation, and that myeloid-derived leukocyte and megakaryocyte populations were prominent among cell types that accumulated GSLs. In the circulation, ⍺-Gal A-deficient rats had increases in cytokine-producing cell types and a corresponding elevation of pro-inflammatory cytokines. Lastly, circulating platelets from ⍺-Gal A-deficient rats accumulated a similar set of ⍺-Galactosidase-A substrates as was observed in megakaryocytes in the bone marrow, and exhibited increased platelet binding to fibrinogen in microfluidic and flow cytometric assays.


Subject(s)
Blood Platelets/cytology , Fabry Disease/metabolism , Myeloid Cells/classification , Myeloid Cells/physiology , alpha-Galactosidase/metabolism , Animals , Bone Marrow/enzymology , CRISPR-Cas Systems , Female , Leukocytes/physiology , Male , Megakaryocytes/physiology , Platelet Activation , Platelet Aggregation , Rats , alpha-Galactosidase/genetics
15.
Glycobiology ; 31(11): 1510-1519, 2021 12 18.
Article in English | MEDLINE | ID: mdl-34314492

ABSTRACT

Glycans play a vital role in health, disease, bioenergy, biomaterials and bio-therapeutics. As a result, there is keen interest to identify and increase glycan data in bioinformatics databases like ChEBI and PubChem, and connecting them to resources at the EMBL-EBI and NCBI to facilitate access to important annotations at a global level. GlyTouCan is a comprehensive archival database that contains glycans obtained primarily through batch upload from glycan repositories, glycoprotein databases and individual laboratories. In many instances, the glycan structures deposited in GlyTouCan may not be fully defined or have supporting experimental evidence and citations. Databases like ChEBI and PubChem were designed to accommodate complete atomistic structures with well-defined chemical linkages. As a result, they cannot easily accommodate the structural ambiguity inherent in glycan databases. Consequently, there is a need to improve the organization of glycan data coherently to enhance connectivity across the major NCBI, EMBL-EBI and glycoscience databases. This paper outlines a workflow developed in collaboration between GlyGen, ChEBI and PubChem to improve the visibility and connectivity of glycan data across these resources. GlyGen hosts a subset of glycans (~29,000) from the GlyTouCan database and has submitted valuable glycan annotations to the PubChem database and integrated over 10,500 (including ambiguously defined) glycans into the ChEBI database. The integrated glycans were prioritized based on links to PubChem and connectivity to glycoprotein data. The pipeline provides a blueprint for how glycan data can be harmonized between different resources. The current PubChem, ChEBI and GlyTouCan mappings can be downloaded from GlyGen (https://data.glygen.org).


Subject(s)
Databases, Chemical , Glycoproteins/chemistry , Polysaccharides/chemistry , Software , Carbohydrate Conformation , Glycomics
16.
Am J Hum Genet ; 108(6): 1040-1052, 2021 06 03.
Article in English | MEDLINE | ID: mdl-33964207

ABSTRACT

SLC37A4 encodes an endoplasmic reticulum (ER)-localized multitransmembrane protein required for transporting glucose-6-phosphate (Glc-6P) into the ER. Once transported into the ER, Glc-6P is subsequently hydrolyzed by tissue-specific phosphatases to glucose and inorganic phosphate during times of glucose depletion. Pathogenic variants in SLC37A4 cause an established recessive disorder known as glycogen storage disorder 1b characterized by liver and kidney dysfunction with neutropenia. We report seven individuals who presented with liver dysfunction multifactorial coagulation deficiency and cardiac issues and were heterozygous for the same variant, c.1267C>T (p.Arg423∗), in SLC37A4; the affected individuals were from four unrelated families. Serum samples from affected individuals showed profound accumulation of both high mannose and hybrid type N-glycans, while N-glycans in fibroblasts and undifferentiated iPSC were normal. Due to the liver-specific nature of this disorder, we generated a CRISPR base-edited hepatoma cell line harboring the c.1267C>T (p.Arg423∗) variant. These cells replicated the secreted abnormalities seen in serum N-glycosylation, and a portion of the mutant protein appears to relocate to a distinct, non-Golgi compartment, possibly ER exit sites. These cells also show a gene dosage-dependent alteration in the Golgi morphology and reduced intraluminal pH that may account for the altered glycosylation. In summary, we identify a recurrent mutation in SLC37A4 that causes a dominantly inherited congenital disorder of glycosylation characterized by coagulopathy and liver dysfunction with abnormal serum N-glycans.


Subject(s)
Antiporters/genetics , Congenital Disorders of Glycosylation/etiology , Endoplasmic Reticulum/pathology , Liver Diseases/complications , Monosaccharide Transport Proteins/genetics , Mutation , Adult , Child , Child, Preschool , Congenital Disorders of Glycosylation/pathology , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Female , Fibroblasts/metabolism , Fibroblasts/pathology , Genes, Dominant , Glycosylation , Humans , Infant , Infant, Newborn , Male , Pedigree
17.
Sci Rep ; 11(1): 8213, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33859256

ABSTRACT

Plasmin is the key enzyme in fibrinolysis. Upon interaction with plasminogen activators, the zymogen plasminogen is converted to active plasmin. Some studies indicate plasminogen activation is regulated by cation-independent mannose 6-phosphate receptor (CI-MPR), a protein that facilitates lysosomal enzyme trafficking and insulin-like growth factor 2 downregulation. Plasminogen regulation may be accomplished by CI-MPR binding to plasminogen or urokinase plasminogen activator receptor. We asked whether other members of the plasminogen activation system, such as tissue plasminogen activator (tPA), also interact with CI-MPR. Because tPA is a glycoprotein with three N-linked glycosylation sites, we hypothesized that tPA contains mannose 6-phosphate (M6P) and binds CI-MPR in a M6P-dependent manner. Using surface plasmon resonance, we found that two sources of tPA bound the extracellular region of human and bovine CI-MPR with low-mid nanomolar affinities. Binding was partially inhibited with phosphatase treatment or M6P. Subsequent studies revealed that the five N-terminal domains of CI-MPR were sufficient for tPA binding, and this interaction was also partially mediated by M6P. The three glycosylation sites of tPA were analyzed by mass spectrometry, and glycoforms containing M6P and M6P-N-acetylglucosamine were identified at position N448 of tPA. In summary, we found that tPA contains M6P and is a CI-MPR ligand.


Subject(s)
Mannosephosphates/metabolism , Receptor, IGF Type 2/metabolism , Tissue Plasminogen Activator/metabolism , Acetylglucosamine/metabolism , Animals , CHO Cells , Cells, Cultured , Cricetulus , Glycoproteins/chemistry , Glycoproteins/metabolism , Humans , Insulin-Like Growth Factor II/chemistry , Insulin-Like Growth Factor II/metabolism , Ligands , Phosphorylation , Protein Binding , Protein Interaction Domains and Motifs , Receptor, IGF Type 2/chemistry , Sf9 Cells , Spodoptera , Tissue Plasminogen Activator/chemistry , Tissue Plasminogen Activator/physiology
18.
Nat Microbiol ; 6(5): 574-583, 2021 05.
Article in English | MEDLINE | ID: mdl-33737747

ABSTRACT

Mucus barriers accommodate trillions of microorganisms throughout the human body while preventing pathogenic colonization1. In the oral cavity, saliva containing the mucins MUC5B and MUC7 forms a pellicle that coats the soft tissue and teeth to prevent infection by oral pathogens, such as Streptococcus mutans2. Salivary mucin can interact directly with microorganisms through selective agglutinin activity and bacterial binding2-4, but the extent and basis of the protective functions of saliva are not well understood. Here, using an ex vivo saliva model, we identify that MUC5B is an inhibitor of microbial virulence. Specifically, we find that natively purified MUC5B downregulates the expression of quorum-sensing pathways activated by the competence stimulating peptide and the sigX-inducing peptide5. Furthermore, MUC5B prevents the acquisition of antimicrobial resistance through natural genetic transformation, a process that is activated through quorum sensing. Our data reveal that the effect of MUC5B is mediated by its associated O-linked glycans, which are potent suppressors of quorum sensing and genetic transformation, even when removed from the mucin backbone. Together, these results present mucin O-glycans as a host strategy for domesticating potentially pathogenic microorganisms without killing them.


Subject(s)
Dental Caries/metabolism , Mucin-5B/metabolism , Polysaccharides/metabolism , Quorum Sensing , Streptococcus mutans/physiology , Dental Caries/genetics , Dental Caries/microbiology , Host-Pathogen Interactions , Humans , Mucin-5B/chemistry , Mucin-5B/genetics , Polysaccharides/chemistry , Saliva/metabolism , Saliva/microbiology , Streptococcus mutans/genetics , Streptococcus mutans/pathogenicity , Transformation, Bacterial , Virulence
19.
Dev Cell ; 56(8): 1195-1209.e7, 2021 04 19.
Article in English | MEDLINE | ID: mdl-33730547

ABSTRACT

Glycans are one of the fundamental classes of macromolecules and are involved in a broad range of biological phenomena. A large variety of glycan structures can be synthesized depending on tissue or cell types and environmental changes. Here, we developed a comprehensive glycosylation mapping tool, termed GlycoMaple, to visualize and estimate glycan structures based on gene expression. We informatically selected 950 genes involved in glycosylation and its regulation. Expression profiles of these genes were mapped onto global glycan metabolic pathways to predict glycan structures, which were confirmed using glycomic analyses. Based on the predictions of N-glycan processing, we constructed 40 knockout HEK293 cell lines and analyzed the effects of gene knockout on glycan structures. Finally, the glycan structures of 64 cell lines, 37 tissues, and primary colon tumor tissues were estimated and compared using publicly available databases. Our systematic approach can accelerate glycan analyses and engineering in mammalian cells.


Subject(s)
Metabolic Networks and Pathways , Cell Line, Tumor , Gene Knockout Techniques , Glycomics , Glycosylation , HEK293 Cells , Humans , Metabolic Networks and Pathways/genetics , Polysaccharides/chemistry , Polysaccharides/metabolism , Reproducibility of Results
20.
J Allergy Clin Immunol ; 147(4): 1442-1452, 2021 04.
Article in English | MEDLINE | ID: mdl-32791164

ABSTRACT

BACKGROUND: The immunoinhibitory receptor Siglec-8 on the surface of human eosinophils and mast cells binds to sialic acid-containing ligands in the local milieu, resulting in eosinophil apoptosis, inhibition of mast cell degranulation, and suppression of inflammation. Siglec-8 ligands were found on postmortem human trachea and bronchi and on upper airways in 2 compartments, cartilage and submucosal glands, but they were surprisingly absent from the epithelium. We hypothesized that Siglec-8 ligands in submucosal glands and ducts are normally transported to the airway mucus layer, which is lost during tissue preparation. OBJECTIVE: Our aim was to identify the major Siglec-8 sialoglycan ligand on the mucus layer of human airways. METHODS: Human upper airway mucus layer proteins were recovered during presurgical nasal lavage of patients at a sinus clinic. Proteins were resolved by gel electrophoresis and blotted, and Siglec-8 ligands detected. Ligands were purified by size exclusion and affinity chromatography, identified by proteomic mass spectrometry, and validated by electrophoretic and histochemical colocalization. The affinity of Siglec-8 binding to purified human airway ligand was determined by inhibition of glycan binding. RESULTS: A Siglec-8-ligand with a molecular weight of approximately 1000 kDa was found in all patient nasal lavage samples. Purification and identification revealed deleted in malignant brain tumors 1 (DMBT1) (also known by the aliases GP340 and SALSA), a large glycoprotein with multiple O-glycosylation repeats. Immunoblotting, immunohistochemistry, and enzyme treatments confirmed that Siglec-8 ligand on the human airway mucus layer is an isoform of DMBT1 carrying O-linked sialylated keratan sulfate chains (DMBT1S8). Quantitative inhibition revealed that DMBT1S8 has picomolar affinity for Siglec-8. CONCLUSION: A distinct DMBT1 isoform, DMBT1S8, is the major high-avidity ligand for Siglec-8 on human airways.


Subject(s)
Antigens, CD/immunology , Antigens, Differentiation, B-Lymphocyte/immunology , Calcium-Binding Proteins/immunology , DNA-Binding Proteins/immunology , Lectins/immunology , Tumor Suppressor Proteins/immunology , Bronchi/immunology , Calcium-Binding Proteins/chemistry , DNA-Binding Proteins/chemistry , Eosinophils/immunology , Humans , Ligands , Mast Cells/immunology , Nasal Lavage Fluid/immunology , Proteoglycans/immunology , Trachea/immunology , Tumor Suppressor Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...