Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 269(Pt 2): 131924, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38688335

ABSTRACT

The objectives of this study were to purify 42 kDa chitinase derived from Trichoderma asperellum SH16 produced in Nicotiana benthamiana by a polyethylene glycol (PEG)/salt aqueous two-phase system (ATPS). The specific activities of the crude chitinase and the partially purified chitinase from N. benthamiana were about 251 unit/mg and 386 unit/mg, respectively. The study found the 300 g/L PEG 6000 + 200 g/L potassium phosphate (PP) and 300 g/L PEG 6000 + 150 g/L sodium phosphate (SP) systems had the highest partitioning efficiency for each salt in primary extraction. However, among the two types of salt, PP displayed higher efficiency than SP, with a partitioning coefficient K of 4.85 vs. 3.89, a volume ratio V of 2.94 vs. 2.68, and a partitioning yield Y of approximately 95 % vs. 83 %. After back extraction, the enzymatic activity of purified chitinase was up to 834 unit/mg (PP) and 492 unit/mg (SP). The purification factors reached 3.32 (PP) and 1.96 (SP), with recovery yields of about 59 % and 61 %, respectively. SDS-PAGE and zymogram analysis showed that the recombinant chitinase was significantly purified by using ATPS. The purified enzyme exhibited high chitinolytic activity, with the hydrolysis zone's diameter being around 2.5 cm-3 cm. It also dramatically reduced the growth of Sclerotium rolfsii; the colony diameter after treatment with 60 unit of enzyme for 104 spores was only about 1 cm, compared to 3.5 cm in the control. The antifungal effect of chitinase suggests that this enzyme has great potential for applications in agricultural production as well as postharvest fruit and vegetable preservation.


Subject(s)
Chitinases , Nicotiana , Phosphates , Polyethylene Glycols , Recombinant Proteins , Chitinases/chemistry , Chitinases/isolation & purification , Chitinases/metabolism , Nicotiana/enzymology , Phosphates/chemistry , Recombinant Proteins/isolation & purification , Polyethylene Glycols/chemistry , Trichoderma/enzymology , Salts/chemistry , Salts/pharmacology , Water/chemistry
2.
World J Microbiol Biotechnol ; 38(7): 112, 2022 May 16.
Article in English | MEDLINE | ID: mdl-35570219

ABSTRACT

Eriodictyol (ED) is a flavonoid in the flavanones subclass. It is abundantly present in a wide range of medicinal plants, citrus fruits, and vegetables. In addition, ED owns numerous importantly medicinal bioactivities such as inhibition of proliferation, metastasis and induction of apoptosis in glioma cells or inhibition of glioblastoma migration, and invasion. This study described the heterologous production of ED by E. coli based co-culture engineering system from the simple carbon substrate D-glucose. Two E. coli strains were engineered and functioned as constitutive components of biological system. Specifically, the first strain (upstream module) contained genes for synthesis of p-coumaric acid (pCA) from D-glucose. And, the second strain (downstream module) consisted of genes for the synthesis of ED from pCA. The highest yield in ED production was achieved 51.5 ± 0.4 mg/L using stepwise optimal culture conditions, while monoculture was achieved 21.3 ± 0.2 mg/L only. In conclusion, co-culture was the most efficient alternative approach for the synthesis of ED and other natural products.


Subject(s)
Escherichia coli , Flavanones , Coculture Techniques , Escherichia coli/genetics , Flavanones/pharmacology , Glucose , Metabolic Engineering
3.
Physiol Mol Biol Plants ; 27(10): 2215-2229, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34744362

ABSTRACT

Vietnamese ginseng (Panax vietnamensis Ha et Grushv.), also known as Ngoc Linh ginseng, is a high-value herb in Vietnam. Vietnamese ginseng has been proven to be effective in enhancing the immune system, human memory, anti-stress, anti-inflammatory, anti-cancer, and prevent aging. The present study reports the first draft whole-genome of Vietnamese ginseng and the identification of potential genes involved in the triterpenoid metabolic pathway. De novo whole-genome assembly was performed successfully from a data of approximately 139 Gbps of 394,802,120 high quality reads to generate 9815 scaffolds with an N50 value of 572,722 bp from the leaf of Vietnamese ginseng. The assembled genome of Vietnamese ginseng is 3,001,967,204 bp long containing 79,374 gene models. Among them, there are 55,012 genes (69.30%) were annotated by various public molecular biology databases. The potential genes involved in triterpenoid saponin biosynthesis in Vietnamese ginseng and their metabolic pathway were also predicted." Three genes encoding squalene monooxygenase isozymes in Vietnamese ginseng were cloned, sequenced and characterized. Moreover, expression levels of several key genes involved in terpenoid biosynthesis in different parts of Vietnamese ginseng were also analyzed. The SSR markers were detected by various programs from both of assembly full dataset of Vietnamese ginseng genome and predicted genes. The present work provided important data of the draft whole-genome of Vietnamese ginseng for further studies to understand the role of genes involved in ginsenoside biosynthesis and their metabolic pathway at the molecular level of this rare medicinal species. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-01076-1.

4.
FEMS Microbiol Lett ; 368(16)2021 09 01.
Article in English | MEDLINE | ID: mdl-34415008

ABSTRACT

Chitinases are enzymes that catalyze the degradation of chitin, a major component of the cell walls of pathogenic fungi and cuticles of insects, gaining increasing attention for the control of fungal pathogens and insect pests. Production of recombinant chitinase in a suitable host can result in a more pure product with less processing time and a significantly larger yield than that produced by native microorganisms. The present study aimed to express the synthetic chi42 gene (syncodChi42), which was optimized from the chi42 gene of Trichoderma asperellum SH16, in Escherichia coli to produce 42 kDa chitinase (Ta-CHI42); then determined the activity of this enzyme, characterizations and in vitro antifungal activity as well as its immunogenicity in mice. The results showed that Ta-CHI42 was overexpressed in E. coli. Analysis of the colloidal chitin hydrolytic activity of purified Ta-CHI42 on an agar plate revealed that this enzyme was in a highly active form. This is a neutral chitinase with pH stability in a range of 6-8 and has an optimum temperature of 45°C with thermal stability in a range of 25-35°C. The chitinolytic activity of Ta-CHI42 was almost completely abolished by 5 mM Zn2+ or 1% SDS, whereas it remained about haft under the effect of 1 M urea, 1% Triton X-100 or 5 mM Cu2+. Except for ions such as Mn2+ and Ca2+ at 5 mM that have enhanced chitinolytic activity; 5 mM of Na+, Fe2+ or Mg2+ ions or 1 mM EDTA negatively impacted the enzyme. Ta-CHI42 at 60 U/mL concentration strongly inhibited the growth of the pathogenic fungus Aspergillus niger. Analysis of western blot indicated that the polyclonal antibody against Ta-CHI42 was greatly produced in mice. It can be used to analyze the expression of the syncodChi42 gene in transgenic plants, through immunoblotting assays, for resistance to pathogenic fungi.


Subject(s)
Chitinases , Gene Expression , Hypocreales , Animals , Chitin/metabolism , Chitinases/genetics , Chitinases/metabolism , Escherichia coli/genetics , Genes, Synthetic/genetics , Hypocreales/enzymology , Hypocreales/genetics , Mice
5.
Front Pharmacol ; 12: 653064, 2021.
Article in English | MEDLINE | ID: mdl-33995068

ABSTRACT

Porcine epidemic diarrhea virus (PEDV), a member of the Coronaviridae family has become increasingly probelmatic in the pig farming industry. Currently, there are no effective, globally applicable vaccines against PEDV. Here, we tested a recombinant PEDV vaccine candidate based on the expression of the core neutralising epitope (COE) of PEDV conjugated to polymeric immunoglobulin G scaffold (PIGS) in glycoengineered Nicotiana be nthamiana plants. The biological activity of COE-PIGS was demonstrated by binding to C1q component of the complement system, as well as the surface of antigen-presenting cells (APCs) in vitro. The recombinant COE-PIGS induced humoral and cellular immune responses specific for PEDV after both systemic and mucosal vaccination. Altogether, the data indicated that PEDV antigen fusion to poly-Fc could be a promising vaccine platform against respiratory PEDV infection.

6.
Biosci. j. (Online) ; 37: e37019, Jan.-Dec. 2021. ilus, tab
Article in English | LILACS | ID: biblio-1359526

ABSTRACT

The present work aims to establish an efficient protocol for in vitro regeneration of peanut (Arachis hypogaea) cultivar L14. The study showed that de-embryonated cotyledon was a suitable explant for shoot multiplication on MS medium containing 4 mg/L BAP. The highest number of shoots per explant obtained after 4 weeks of culture was up to 6.8 shoots. Shoots in vitro were able to produce a large number of approximately 11 roots on MS medium supplemented with 0.5 mg/L NAA. These results will be very useful in establishing an in vitro regeneration protocol for peanut cultivar L14 during gene transfer in the next studies to improve their disease resistance.


Subject(s)
Arachis , In Vitro Techniques
7.
Plant Cell Tissue Organ Cult ; 137(2): 213-223, 2019.
Article in English | MEDLINE | ID: mdl-32214566

ABSTRACT

The porcine epidemic diarrhea virus (PEDV) belongs to the coronavirus family, which causes acute diarrhea in pigs with higher mortality in piglets less than 2 weeks old. The PEDV is one of the major concerns of the pig industry around the world, including Asian countries and Noth America since first identified in Europe. Currently, there is no PEDV licensed vaccine to effectively prevent this disease. This study was performed for the development of a mucosal PEDV vaccine and B subunit of cholera toxin (CTB) as a carrier was employed to surpass the tolerogenic nature of GALT and induce potent immune responses against the target antigen fused to CTB. An epitope (S1D) alone or conjugated with CTB was constructed into the tobacco chloroplasts expression vector which is controlled under the chloroplast rRNA operon promoter with T7g10 5' UTR and the psbA 3'UTR as a terminator. The homoplastomic lines were obtained by third round screening via organogenesis from the leaf tissues which were verified by PCR with antigen and chloroplast specific primers and then confirmed by Southern blot analysis. While the expression level of the S1D alone as detected by Western blotting was approximately 0.07% of total soluble protein, the CTB-S1D fusion protein was expressed up to 1.4%. The fusion protein showed binding to the intestinal membrane GM1-ganglioside receptor, demonstrating its functionality. The result shows that the highest expression of S1D could be achieved by fusion with a stable CTB protein and chloroplast transformation. Furthermore, the CTB-S1D expressed in chloroplasts of Nicotiana tabacum cv. Maryland could be assembled to pentameric form which increases the possibility to develop a mucosal vaccine against PEDV.

8.
Protein Expr Purif ; 133: 170-176, 2017 05.
Article in English | MEDLINE | ID: mdl-28192199

ABSTRACT

Viral hemorrhagic septicemia virus (VHSV) causes mortality in numerous marine and freshwater fish species resulting in heavy losses in fish farming. The glycoprotein gene of VHSV was fused with the cholera toxin B subunit (CTB) and expressed transiently in leaf tissues of Nicotiana benthamiana via the agroinfiltration method. The glycoprotein gene was divided into two parts to improve assembly of CTB fusion proteins (CTB-VHSV99-235 and CTB-VHSV258-417). Production of CTB fusion proteins was confirmed in the agroinfiltrated leaf tissue by western blot analysis. The plant-produced CTB fusion proteins showed biological activity to GM1-ganglioside, a receptor for biologically active CTB, on GM1-ELISA. The expression level of the CTB-VHSV fusion proteins was 0.86% (CTB-VHSV99-235) and 0.93% (CTB-VHSV258-417) of total proteins in agroinfiltrated leaf tissue, as determined by GM1-ELISA. These results suggest that Agrobacterium-mediated transient expression of CTB fusion antigens of VHSV is a rapid and convenient method and demonstrate the feasibility of using agroinfiltrated plant leaf tissues expressing CTB-fusion antigens as a plant-based vaccine to prevent VHSV infection.


Subject(s)
Glycoproteins , Nicotiana/metabolism , Novirhabdovirus/genetics , Plant Leaves/metabolism , Plants, Genetically Modified/metabolism , Viral Proteins , Cholera Toxin/biosynthesis , Cholera Toxin/genetics , Glycoproteins/biosynthesis , Glycoproteins/genetics , Novirhabdovirus/metabolism , Plant Leaves/genetics , Plants, Genetically Modified/genetics , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/genetics , Nicotiana/genetics , Viral Proteins/biosynthesis , Viral Proteins/genetics
9.
Protein Expr Purif ; 139: 57-62, 2017 Nov.
Article in English | MEDLINE | ID: mdl-27335159

ABSTRACT

The rates of mosquito-transmitted dengue virus infection in humans have increased in tropical and sub-tropical areas. Domain III of dengue envelope protein (EDIII) is involved in cellular receptor binding and induces serotype-specific neutralizing antibodies. EDIII fused to the B subunit of Vibrio cholera (CTB-EDIII) was expressed in potatoes to develop a plant-based vaccine against dengue virus type 2. CTB-EDIII fused to an endoplasmic reticulum (ER) retention signal, SEKDEL, was introduced into potatoes by A. tumefaciens-mediated gene transformation. The integration of the CTB-EDIII fusion gene into the nuclear genome of transgenic plants was confirmed by genomic DNA polymerase chain reaction (PCR), and mRNA transcripts of CTB-EDIII were detected. CTB-EDIII fusion protein was expressed in potato tubers and assembled into a pentameric form capable of binding monosialotetrahexosylganglioside (GM1). The level of expression was determined to be ∼0.005% of total soluble protein in potato tubers. These results suggest that dengue virus antigen could be produced in potatoes, raising the possibility that edible plants are employed in mucosal vaccines for protection against dengue infection.


Subject(s)
Cholera Toxin/metabolism , Dengue Vaccines/metabolism , Recombinant Fusion Proteins/metabolism , Viral Envelope Proteins/metabolism , Cholera Toxin/genetics , Dengue Vaccines/chemistry , Dengue Vaccines/genetics , Dengue Virus , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Solanum tuberosum/genetics , Solanum tuberosum/metabolism , Viral Envelope Proteins/genetics
10.
Plant Cell Tissue Organ Cult ; 127(2): 369-380, 2016.
Article in English | MEDLINE | ID: mdl-32214565

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) belongs to the Coronaviridae family and causes acute enteritis in pigs. A fragment of the large spike glycoprotein, termed the S1D epitope (aa 636-789), alone and fused with cholera toxin B subunit, were independently cloned into plant expression vectors, yielding plasmids pMYV717 and pMYV719, respectively. Plant expression vectors were transformed into Agrobacterium tumefaciens and subsequently infiltrated into Nicotiana benthamiana leaves. The highest expression level of S1D was found at 2 days post infiltration (dpi), reached 0.04 % of total soluble protein, and rapidly decreased thereafter. The expression and assembly of CTB-S1D fusion protein were confirmed by Western blot and GM1-ELISA. The highest expression level of CTB-S1D fusion protein was 0.07 % of TSP at 4 dpi, with a rapid decrease thereafter. In the presence of p19 protein from tomato bushy stunt virus, the S1D and CTB-S1D protein levels peaked at 6 dpi and were fourfold to sevenfold higher than in the absence of p19, respectively. After oral administration of transiently expressed CTB-S1D fusion protein, or with bacterial cholera toxin or rice callus expressing mutant cholera toxin 61F, mice exhibited significantly greater serum IgG and sIgA levels against bacterial CTB and S1D antigen, peaking at week 6. Transiently expressed CTB-S1D fusion protein will be administered orally to pigs to assess the immune response against PEDV.

11.
Mol Biotechnol ; 56(12): 1069-78, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25069989

ABSTRACT

Dengue is a disease caused by dengue virus and represents the most important arthropod-borne viral disease in humans. Dengue virus enters host cells via binding of envelope glycoprotein (E) to a receptor. In this study, plant expression vectors containing native and synthetic glycoprotein E genes (sE) modified based on plant-optimized codon usage and fused with an ER retention signal were constructed under control of the rice amylase 3D promoter expression system. Plant expression vectors were introduced into rice callus (Oryza sativa L. cv. Dongin) via particle bombardment-mediated transformation. The integration and expression of target genes were confirmed in the transgenic callus by genomic DNA PCR and Northern blot analyses, respectively. The plant-codon optimized sE gene with an ER retention signal showed high protein production levels based on Western blot analysis of approximately 18.5 ug/g dried calli weight by immunoblot-based densitometric analysis. These results suggest that the plant-codon optimized sE gene with an ER retention signal was highly produced in the transgenic rice callus.


Subject(s)
Dengue Virus/metabolism , Oryza/genetics , Recombinant Proteins/genetics , Viral Envelope Proteins/biosynthesis , Dengue Virus/genetics , Gene Expression Profiling , Genetic Vectors/genetics , Oryza/metabolism , Plants, Genetically Modified/genetics , Transformation, Genetic , Viral Envelope Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...