Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Respir Cell Mol Biol ; 70(3): 165-177, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37976469

ABSTRACT

Chronic obstructive pulmonary disease (COPD) remains a major public health challenge that contributes greatly to mortality and morbidity worldwide. Although it has long been recognized that the epithelium is altered in COPD, there has been little focus on targeting it to modify the disease course. Therefore, mechanisms that disrupt epithelial cell function in patients with COPD are poorly understood. In this study, we sought to determine whether epigenetic reprogramming of the cell-cell adhesion molecule E-cadherin, encoded by the CDH1 gene, disrupts epithelial integrity. By reducing these epigenetic marks, we can restore epithelial integrity and rescue alveolar airspace destruction. We used differentiated normal and COPD-derived primary human airway epithelial cells, genetically manipulated mouse tracheal epithelial cells, and mouse and human precision-cut lung slices to assess the effects of epigenetic reprogramming. We show that the loss of CDH1 in COPD is due to increased DNA methylation site at the CDH1 enhancer D through the downregulation of the ten-eleven translocase methylcytosine dioxygenase (TET) enzyme TET1. Increased DNA methylation at the enhancer D region decreases the enrichment of RNA polymerase II binding. Remarkably, treatment of human precision-cut slices derived from patients with COPD with the DNA demethylation agent 5-aza-2'-deoxycytidine decreased cell damage and reduced air space enlargement in the diseased tissue. Here, we present a novel mechanism that targets epigenetic modifications to reverse the tissue remodeling in human COPD lungs and serves as a proof of concept for developing a disease-modifying target.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Humans , Animals , Mice , Pulmonary Disease, Chronic Obstructive/genetics , Cell Differentiation , DNA Methylation , Disease Progression , Epigenesis, Genetic , Mixed Function Oxygenases , Proto-Oncogene Proteins
2.
Adv Biol (Weinh) ; : e2300165, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37840439

ABSTRACT

The interactions between immune cells and epithelial cells influence the progression of many respiratory diseases, such as chronic obstructive pulmonary disease (COPD). In vitro models allow for the examination of cells in controlled environments. However, these models lack the complex 3D architecture and vast multicellular interactions between the lung resident cells and infiltrating immune cells that can mediate cellular response to insults. In this study, three complementary microphysiological systems are presented to delineate the effects of cigarette smoke and respiratory disease on the lung epithelium. First, the Transwell system allows the co-culture of pulmonary immune and epithelial cells to evaluate cellular and monolayer phenotypic changes in response to cigarette smoke exposure. Next, the human and mouse precision-cut lung slices system provides a physiologically relevant model to study the effects of chronic insults like cigarette smoke with the dissection of specific interaction of immune cell subtypes within the structurally complex tissue environment. Finally, the lung-on-a-chip model provides an adaptable system for live imaging of polarized epithelial tissues that mimic the in vivo environment of the airways. Using a combination of these models, a complementary approach is provided to better address the intricate mechanisms of lung disease.

3.
Commun Biol ; 5(1): 1149, 2022 10 29.
Article in English | MEDLINE | ID: mdl-36309587

ABSTRACT

Epithelial cells line the lung mucosal surface and are the first line of defense against toxic exposures to environmental insults, and their integrity is critical to lung health. An early finding in the lung epithelium of patients with chronic obstructive pulmonary disease (COPD) is the loss of a key component of the adherens junction protein called E-cadherin. The cause of this decrease is not known and could be due to luminal insults or structural changes in the small airways. Irrespective, it is unknown whether the loss of E-cadherin is a marker or a driver of disease. Here we report that loss of E-cadherin is causal to the development of chronic lung disease. Using cell-type-specific promoters, we find that knockout of E-cadherin in alveolar epithelial type II but not type 1 cells in adult mouse models results in airspace enlargement. Furthermore, the knockout of E-cadherin in airway ciliated cells, but not club cells, increase airway hyperreactivity. We demonstrate that strategies to upregulate E-cadherin rescue monolayer integrity and serve as a potential therapeutic target.


Subject(s)
Cadherins , Pulmonary Disease, Chronic Obstructive , Animals , Mice , Cadherins/genetics , Cadherins/metabolism , Epithelial Cells/metabolism , Epithelium/metabolism , Lung/pathology , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...