Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Gen Virol ; 103(9)2022 09.
Article in English | MEDLINE | ID: mdl-36125358

ABSTRACT

The virus family Totiviridae had originally been considered to include only viruses which infected fungal and protist hosts, but since 2006 a growing number of viruses found in invertebrates and fish have been shown to cluster phylogenetically within this family. These Totiviridae-like, or toti-like, viruses do not appear to belong within any existing genera of Totiviridae, and whilst a number of new genus names have been suggested, none has yet been universally accepted. Within this growing number of toti-like viruses from animal hosts, there exists emerging viral threats particularly to aquaculture, namely Infectious myonecrosis virus in whiteleg shrimp and Piscine myocarditis virus (PMCV) in Atlantic salmon (Salmo salar). PMCV in particular continues to be an issue in salmon aquaculture as a number of questions remain unanswered about how the virus is transmitted and the route of entry into host fish. Using a phylogenetic approach, this study shows how PMCV and the other fish toti-like viruses probably have deeper origins in an arthropod host. Based on this, it is hypothesized that sea lice could be acting as a vector for PMCV, as seen with other RNA viruses in Atlantic salmon aquaculture and in the toti-like Cucurbit yellows-associated virus which is spread by the greenhouse whitefly Trialeurodes vaporariorum.


Subject(s)
Fish Diseases , Salmo salar , Totiviridae , Animals , Invertebrates , Phylogeny , Totiviridae/genetics
2.
Sci Rep ; 12(1): 13875, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35974032

ABSTRACT

Bacteria in the Shigella genus remain a major cause of dysentery in sub-Saharan Africa, and annually cause an estimated 600,000 deaths worldwide. Being spread by contaminated food and water, this study highlights how wild caught food, in the form of freshwater catfish, can act as vectors for Shigella flexneri in Southern Kenya. A metatranscriptomic approach was used to identify the presence of Shigella flexneri in the catfish which had been caught for consumption from the Galana river. The use of nanopore sequencing was shown to be a simple and effective method to highlight the presence of Shigella flexneri and could represent a potential new tool in the detection and prevention of this deadly pathogen. Rather than the presence/absence results of more traditional testing methods, the use of metatranscriptomics highlighted how primarily one SOS response gene was being transcribed, suggesting the bacteria may be dormant in the catfish. Additionally, COI sequencing of the vector catfish revealed they likely represent a cryptic species. Morphological assignment suggested the fish were widehead catfish Clarotes laticeps, which range across Africa, but the COI sequences from the Kenyan fish are distinctly different from C. laticeps sequenced in West Africa.


Subject(s)
Catfishes , Dysentery, Bacillary , Nanopores , Shigella , Animals , Catfishes/genetics , Dysentery, Bacillary/microbiology , Kenya , Shigella flexneri/genetics
3.
Dis Aquat Organ ; 142: 203-211, 2020 Dec 17.
Article in English | MEDLINE | ID: mdl-33331288

ABSTRACT

Salmon pancreas disease virus, more commonly known as salmonid alphavirus (SAV), is a single-stranded positive sense RNA virus and the causative agent of pancreas disease and sleeping disease in salmonids. In this study, a unique strain of SAV previously isolated from ballan wrasse was subjected to whole genome sequencing using nanopore sequencing. In order to accurately examine the evolutionary history of this strain in comparison to other SAV strains, a partitioned phylogenetic analysis was performed to account for variation in the rate of evolution for both individual genes and codon positions. Partitioning the genome alignments almost doubled the observed branch lengths in the phylogenetic tree when compared to the more common approach of applying one model of substitution across the genome and significantly increased the statistical fit of the best-fitting models of nucleotide substitution. Based on the genomic data, a valid case can be made for the viral strain examined in this study to be considered a new SAV genotype. In addition, this study adds to a growing number of studies in which SAV has been found to infect non-salmonid fish, and as such we have suggested that the viral species name be amended to the more inclusive 'piscine alphavirus'.


Subject(s)
Alphavirus Infections , Alphavirus , Fish Diseases , Nanopores , Salmo salar , Salmonidae , Alphavirus/genetics , Alphavirus Infections/veterinary , Animals , Genotype , Phylogeny , Whole Genome Sequencing/veterinary
4.
Ecol Evol ; 10(7): 3330-3337, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32273990

ABSTRACT

Swabbing scat has proved to be an effective noninvasive method to collect DNA from mammals in the field. Previously, this method has relied on preservative liquids or freezing to preserve the DNA collected on swabs. In this study, we determine the effectiveness of using silica to simply dry the swab in field as an alternative way to prevent DNA degredation. Four species were included in the study; reticulated giraffe, impala, fringe-eared oryx, and lion. Swabs were taken at multiple time points for giraffe and impala scat samples, with the lion and oryx sampled opportunistically. Mitochondrial DNA was successfully amplified and sequenced from scat swabs from all species; however, effectiveness varied between species, with 81.8% amplification success rate from swabs taken from impala scat compared to 25% amplification success rate in giraffe. This variation in success rate was overcome by taking multiple swabs, thus increasing the probability of a successful amplification. The true merit of this method is in its simplicity and cheapness; no preservative liquids were required to be brought into the field, at no stage in the 2 weeks of field sampling were samples frozen, and no commercial kits were used for DNA extraction.

5.
J Fish Dis ; 42(8): 1161-1168, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31169311

ABSTRACT

Piscine myocarditis virus (PMCV) is a double-stranded RNA virus which has been linked to cardiomyopathy syndrome (CMS) in Atlantic salmon (Salmo salar L.). The first recorded outbreak of CMS in Ireland occurred in 2012. Heart tissue samples were collected in the current study from farmed Atlantic salmon from various marine sites around Ireland, and the open reading frames (ORFs) 1 and 3 were amplified and sequenced in order to examine the genetic diversity of PMCV. Results showed PMCV to be largely homogenous in Irish samples, showing little genetic diversity. However, several amino acid positions within both ORF1 and ORF3 showed consistent variations unique to the Irish PMCV strains when compared with previously published Norwegian strains. The phylogeny generated in the present study suggests that PMCV may have been introduced into Ireland in two waves, both coming from the southern part of PMCV's range in Norway. In addition, over three-quarters of the PMCV strains which were sequenced came from fish not exhibiting any clinical signs of CMS, suggesting that either PMCV is evolving to become less virulent in Ireland or Irish Atlantic salmon are developing immunity to the disease.


Subject(s)
Fish Diseases/virology , Genetic Variation , RNA Virus Infections/veterinary , Salmo salar , Totiviridae/genetics , Animals , Ireland , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...