Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 28(29): 38706-38717, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33742379

ABSTRACT

Abuse of antibiotics in aquaculture have been alarming and might aggravate spread of resistance genes in the environment. Holistic ARGs proliferation checks require deeper analyses of coupled absolute abundances in 16S rRNA bacteria communities at the phylum level to detect biomarkers. Sulfanilamide (sul) and copper II sulfate (CuSO4 II) were, therefore, designed and added as separate or combined treatments in 9 replicate engineered goldfish tanks comprising 3 individual sul, 3 CuSO4 II, 3 (sul + CuSO4 II) combinations, and 3 controls within 180 days. The DNA from water and fish guts was sequenced under qPCR to determine 16S rRNA bacteria biomarkers co-occurring with the correspondent ARGs. Combined chemical addition at 0.8-1.5 mg sul + 0.5-1.0 mg CuSO4 II/3 L of tank waters reduced sequenced 16S rRNA bacteria absolute abundances in fish gut and water samples while portraying the biomarkers. Absolute abundances of the entire 16S rRNA bacteria was higher in fish guts (3.4 × 1014-4.9 × 108 copies/g) than water samples (1.5 × 109-2.6 × 1015 copies/L), respectively. Much as sul 1(log) were dominant over intl 1(log) genes, and their fundamental profiles were also higher in the fish guts than water samples; the Spearman's correlation analyses revealed positive relationship (p < 0.01 and r = 0.873) among the biomarkers of both ARG pairs at the phylum level and the physicochemical parameters. In the fish gut and water samples ratios, Bacteroidetes (10-85:12-85%) > Proteobacteria (10-50:15-65%) > Planktomycetes (10-52:8-25%) featured prominently based on LEfSe use as the hot-spotted biomarkers, hence justifying its higher prospects towards innovative environmental microbiological and biotechnological studies.


Subject(s)
Copper , Genes, Bacterial , Animals , Anti-Bacterial Agents , Bacteria/genetics , Drug Resistance, Microbial , Goldfish , RNA, Ribosomal, 16S/genetics , Sulfanilamide
2.
Chemosphere ; 234: 953-961, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31519104

ABSTRACT

Excessive application of phosphorus (P) fertilizer to the agriculture soil can lead to the P loss to the aquatic ecosystem. Three soils from different land use (tea, paddy, and vegetable soils) were treated with biogas slurry (BS) at rate of 79.8 kg ha-1, anionic polyacrylamide (PAM) at rate of 12.5, 25 and 50 kg ha-1, Gypsum (Gy) at rate of 5t ha-1, and the control (Ck) without treatment, to control P losses in a laboratory batch experiment. The soil solution was analyzed for total P (TP), dissolved reactive P (DRP) and total dissolved P (TDP). Particulate P (PP) and dissolved unreactive P (DURP) were calculated by subtracting DRP from TP and TDP, respectively. The DRP was within a range of 68-98% of TP whereas PP varied in a range of 2-32% of TP and DURP was within a range of 0.1-19% of TP, depending on soil types and different treatments. The addition of PAM at a high rate and Gy together on the soil after BS application reduced the release of TP by 54, 46, and 51% and that of DRP by 61, 49, and 53% for tea, paddy and vegetable soils, respectively. However, the application of BS with PAM alone promoted the release of DRP by 77, 86, 70% for tea, paddy, and vegetable soils, respectively. This study suggests that the synergic application of PAM and Gy on soils after BS addition can be a good strategy to reduce P losses.


Subject(s)
Acrylic Resins/chemistry , Fertilizers , Phosphorus/chemistry , Soil/chemistry , Agriculture , Anions , Biofuels , Calcium Sulfate , Ecosystem , Manure
SELECTION OF CITATIONS
SEARCH DETAIL