Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Infect Dis ; 9(11): 2190-2201, 2023 11 10.
Article in English | MEDLINE | ID: mdl-37820055

ABSTRACT

Pathogenic free-living amoebae (pFLA) can cause life-threatening central nervous system (CNS) infections and warrant the investigation of new chemical agents to combat the rise of infection from these pathogens. Naegleria fowleri glucokinase (NfGlck), a key metabolic enzyme involved in generating glucose-6-phosphate, was previously identified as a potential target due to its limited sequence similarity with human Glck (HsGlck). Herein, we used our previously demonstrated multifragment kinetic target-guided synthesis (KTGS) screening strategy to identify inhibitors against pFLA glucokinases. Unlike the majority of previous KTGS reports, our current study implements a "shotgun" approach, where fragments were not biased by predetermined binding potentials. The study resulted in the identification of 12 inhibitors against 3 pFLA glucokinase enzymes─NfGlck, Balamuthia mandrillaris Glck (BmGlck), and Acanthamoeba castellanii Glck (AcGlck). This work demonstrates the utility of KTGS to identify small-molecule binders for biological targets where resolved X-ray crystal structures are not readily accessible.


Subject(s)
Acanthamoeba castellanii , Amoeba , Balamuthia mandrillaris , Naegleria fowleri , Humans , Glucokinase
2.
Sci Rep ; 11(1): 21664, 2021 11 04.
Article in English | MEDLINE | ID: mdl-34737367

ABSTRACT

Balamuthia mandrillaris, a pathogenic free-living amoeba, causes cutaneous skin lesions as well as granulomatous amoebic encephalitis, a 'brain-eating' disease. As with the other known pathogenic free-living amoebas (Naegleria fowleri and Acanthamoeba species), drug discovery efforts to combat Balamuthia infections of the central nervous system are sparse; few targets have been validated or characterized at the molecular level, and little is known about the biochemical pathways necessary for parasite survival. Current treatments of encephalitis due to B. mandrillaris lack efficacy, leading to case fatality rates above 90%. Using our recently published methodology to discover potential drugs against pathogenic amoebas, we screened a collection of 85 compounds with known antiparasitic activity and identified 59 compounds that impacted the growth of Balamuthia trophozoites at concentrations below 220 µM. Since there is no fully annotated genome or proteome of B. mandrillaris, we sequenced and assembled its transcriptome from a high-throughput RNA-sequencing (RNA-Seq) experiment and located the coding sequences of the genes potentially targeted by the growth inhibitors from our compound screens. We determined the sequence of 17 of these target genes and obtained expression clones for 15 that we validated by direct sequencing. These will be used in the future in combination with the identified hits in structure guided drug discovery campaigns to develop new approaches for the treatment of Balamuthia infections.


Subject(s)
Balamuthia mandrillaris/genetics , Drug Design/methods , Trophozoites/genetics , Acanthamoeba/genetics , Amebiasis/drug therapy , Amoeba/genetics , Balamuthia mandrillaris/drug effects , Balamuthia mandrillaris/growth & development , Base Sequence , Brain/pathology , Drug Discovery/methods , Encephalitis/pathology , Gene Expression/genetics , Naegleria fowleri/genetics , Transcriptome/genetics , Trophozoites/drug effects
3.
PLoS One ; 16(4): e0250019, 2021.
Article in English | MEDLINE | ID: mdl-33886614

ABSTRACT

SARS-CoV-2 has caused a global pandemic, and has taken over 1.7 million lives as of mid-December, 2020. Although great progress has been made in the development of effective countermeasures, with several pharmaceutical companies approved or poised to deliver vaccines to market, there is still an unmet need of essential antiviral drugs with therapeutic impact for the treatment of moderate-to-severe COVID-19. Towards this goal, a high-throughput assay was used to screen SARS-CoV-2 nsp15 uracil-dependent endonuclease (endoU) function against 13 thousand compounds from drug and lead repurposing compound libraries. While over 80% of initial hit compounds were pan-assay inhibitory compounds, three hits were confirmed as nsp15 endoU inhibitors in the 1-20 µM range in vitro. Furthermore, Exebryl-1, a ß-amyloid anti-aggregation molecule for Alzheimer's therapy, was shown to have antiviral activity between 10 to 66 µM, in Vero 76, Caco-2, and Calu-3 cells. Although the inhibitory concentrations determined for Exebryl-1 exceed those recommended for therapeutic intervention, our findings show great promise for further optimization of Exebryl-1 as an nsp15 endoU inhibitor and as a SARS-CoV-2 antiviral.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Drug Repositioning , Endoribonucleases/antagonists & inhibitors , SARS-CoV-2/drug effects , Small Molecule Libraries/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Animals , Antiviral Agents/chemistry , COVID-19/virology , Caco-2 Cells , Chlorocebus aethiops , Drug Repositioning/methods , Endoribonucleases/metabolism , High-Throughput Screening Assays/methods , Humans , Molecular Docking Simulation , SARS-CoV-2/metabolism , Small Molecule Libraries/chemistry , Vero Cells , Viral Nonstructural Proteins/metabolism
4.
PLoS One ; 16(3): e0241738, 2021.
Article in English | MEDLINE | ID: mdl-33760815

ABSTRACT

Naegleria fowleri is a pathogenic, thermophilic, free-living amoeba which causes primary amebic meningoencephalitis (PAM). Penetrating the olfactory mucosa, the brain-eating amoeba travels along the olfactory nerves, burrowing through the cribriform plate to its destination: the brain's frontal lobes. The amoeba thrives in warm, freshwater environments, with peak infection rates in the summer months and has a mortality rate of approximately 97%. A major contributor to the pathogen's high mortality is the lack of sensitivity of N. fowleri to current drug therapies, even in the face of combination-drug therapy. To enable rational drug discovery and design efforts we have pursued protein production and crystallography-based structure determination efforts for likely drug targets from N. fowleri. The genes were selected if they had homology to drug targets listed in Drug Bank or were nominated by primary investigators engaged in N. fowleri research. In 2017, 178 N. fowleri protein targets were queued to the Seattle Structural Genomics Center of Infectious Disease (SSGCID) pipeline, and to date 89 soluble recombinant proteins and 19 unique target structures have been produced. Many of the new protein structures are potential drug targets and contain structural differences compared to their human homologs, which could allow for the development of pathogen-specific inhibitors. Five of the structures were analyzed in more detail, and four of five show promise that selective inhibitors of the active site could be found. The 19 solved crystal structures build a foundation for future work in combating this devastating disease by encouraging further investigation to stimulate drug discovery for this neglected pathogen.


Subject(s)
Drug Discovery , Naegleria fowleri/metabolism , Protozoan Proteins/antagonists & inhibitors , Adenosylhomocysteinase/antagonists & inhibitors , Adenosylhomocysteinase/chemistry , Adenosylhomocysteinase/metabolism , Binding Sites , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Molecular Dynamics Simulation , Naegleria fowleri/genetics , Phosphoglycerate Mutase/antagonists & inhibitors , Phosphoglycerate Mutase/chemistry , Phosphoglycerate Mutase/metabolism , Protein Structure, Quaternary , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Protein-Arginine N-Methyltransferases/chemistry , Protein-Arginine N-Methyltransferases/metabolism , Proteome , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism
5.
Sci Rep ; 11(1): 4290, 2021 02 22.
Article in English | MEDLINE | ID: mdl-33619344

ABSTRACT

Rapid generation of diagnostics is paramount to understand epidemiology and to control the spread of emerging infectious diseases such as COVID-19. Computational methods to predict serodiagnostic epitopes that are specific for the pathogen could help accelerate the development of new diagnostics. A systematic survey of 27 SARS-CoV-2 proteins was conducted to assess whether existing B-cell epitope prediction methods, combined with comprehensive mining of sequence databases and structural data, could predict whether a particular protein would be suitable for serodiagnosis. Nine of the predictions were validated with recombinant SARS-CoV-2 proteins in the ELISA format using plasma and sera from patients with SARS-CoV-2 infection, and a further 11 predictions were compared to the recent literature. Results appeared to be in agreement with 12 of the predictions, in disagreement with 3, while a further 5 were deemed inconclusive. We showed that two of our top five candidates, the N-terminal fragment of the nucleoprotein and the receptor-binding domain of the spike protein, have the highest sensitivity and specificity and signal-to-noise ratio for detecting COVID-19 sera/plasma by ELISA. Mixing the two antigens together for coating ELISA plates led to a sensitivity of 94% (N = 80 samples from persons with RT-PCR confirmed SARS-CoV-2 infection), and a specificity of 97.2% (N = 106 control samples).


Subject(s)
COVID-19/diagnosis , COVID-19/immunology , Enzyme-Linked Immunosorbent Assay/methods , Epitopes, B-Lymphocyte/immunology , SARS-CoV-2/pathogenicity , Humans , Real-Time Polymerase Chain Reaction , SARS-CoV-2/immunology , Signal-To-Noise Ratio
6.
J Biol Inorg Chem ; 25(3): 489-500, 2020 05.
Article in English | MEDLINE | ID: mdl-32219554

ABSTRACT

In this study, we investigate the thermodynamic mechanisms by which electron transfer proteins adapt to environmental temperature by directly comparing the redox properties and folding stability of a psychrophilic cytochrome c and a mesophilic homolog. Our model system consists of two cytochrome c6 proteins from diatoms: one adapted specifically to polar environments, the other adapted generally to surface ocean environments. Direct electrochemistry shows that the midpoint potential for the mesophilic homolog is slightly higher at all temperatures measured. Cytochrome c6 from the psychrophilic diatom unfolds with a melting temperature 10.4 °C lower than the homologous mesophilic cytochrome c6. Changes in free energy upon unfolding are identical, within error, for the psychrophilic and mesophilic protein; however, the chemical unfolding transition of the psychrophilic cytochrome c6 is more cooperative than for the mesophilic cytochrome c6. Substituting alanine residues found in the mesophile with serine found in corresponding positions of the psychrophile demonstrates that burial of the polar serine both decreases the thermal stability and decreases the midpoint potential. The mutagenesis data, combined with differences in the m-value of chemical denaturation, suggest that differences in solvent accessibility of the hydrophobic core underlie the adaptation of cytochrome c6 to differing environmental temperature.


Subject(s)
Alanine/chemistry , Cytochromes c6/chemistry , Serine/chemistry , Thermodynamics , Adaptation, Physiological , Alanine/metabolism , Amino Acid Sequence , Cytochromes c6/genetics , Cytochromes c6/metabolism , Diatoms , Electron Transport , Protein Unfolding , Scenedesmus/enzymology , Sequence Alignment , Serine/metabolism
7.
Protein Sci ; 29(3): 768-778, 2020 03.
Article in English | MEDLINE | ID: mdl-31930578

ABSTRACT

Neisseria gonorrhoeae (Ng) and Chlamydia trachomatis (Ct) are the most commonly reported sexually transmitted bacteria worldwide and usually present as co-infections. Increasing resistance of Ng to currently recommended dual therapy of azithromycin and ceftriaxone presents therapeutic challenges for syndromic management of Ng-Ct co-infections. Development of a safe, effective, and inexpensive dual therapy for Ng-Ct co-infections is an effective strategy for the global control and prevention of these two most prevalent bacterial sexually transmitted infections. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a validated drug target with two approved drugs for indications other than antibacterials. Nonetheless, any new drugs targeting GAPDH in Ng and Ct must be specific inhibitors of bacterial GAPDH that do not inhibit human GAPDH, and structural information of Ng and Ct GAPDH will aid in finding such selective inhibitors. Here, we report the X-ray crystal structures of Ng and Ct GAPDH. Analysis of the structures demonstrates significant differences in amino acid residues in the active sites of human GAPDH from those of the two bacterial enzymes suggesting design of compounds to selectively inhibit Ng and Ct is possible. We also describe an efficient in vitro assay of recombinant GAPDH enzyme activity amenable to high-throughput drug screening to aid in identifying inhibitory compounds and begin to address selectivity.


Subject(s)
Chlamydia trachomatis/enzymology , Glyceraldehyde-3-Phosphate Dehydrogenases/chemistry , Neisseria gonorrhoeae/enzymology , Crystallography, X-Ray , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Glyceraldehyde-3-Phosphate Dehydrogenases/antagonists & inhibitors , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Humans , Models, Molecular , Recombinant Proteins/metabolism , Structure-Activity Relationship
8.
Protein Sci ; 29(3): 789-802, 2020 03.
Article in English | MEDLINE | ID: mdl-31930600

ABSTRACT

Acinetobacter baumannii is well known for causing hospital-associated infections due in part to its intrinsic antibiotic resistance as well as its ability to remain viable on surfaces and resist cleaning agents. In a previous publication, A. baumannii strain AB5075 was studied by transposon mutagenesis and 438 essential gene candidates for growth on rich-medium were identified. The Seattle Structural Genomics Center for Infectious Disease entered 342 of these candidate essential genes into our pipeline for structure determination, in which 306 were successfully cloned into expression vectors, 192 were detectably expressed, 165 screened as soluble, 121 were purified, 52 crystalized, 30 provided diffraction data, and 29 structures were deposited in the Protein Data Bank. Here, we report these structures, compare them with human orthologs where applicable, and discuss their potential as drug targets for antibiotic development against A. baumannii.


Subject(s)
Acinetobacter baumannii/chemistry , Acinetobacter baumannii/drug effects , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Genome, Bacterial/drug effects , Genome, Bacterial/genetics , Acinetobacter baumannii/genetics , Bacterial Proteins/genetics , Coproporphyrinogen Oxidase/chemistry , Coproporphyrinogen Oxidase/metabolism , Drug Resistance, Bacterial/drug effects , Humans , Methionine-tRNA Ligase/chemistry , Methionine-tRNA Ligase/metabolism , Models, Molecular , Protein Conformation , Uroporphyrinogen Decarboxylase/chemistry , Uroporphyrinogen Decarboxylase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...