Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Cardiol ; 406: 132044, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38614364

ABSTRACT

INTRODUCTION: Tissue Fibroblast Activation Protein alpha (FAP) is overexpressed in various types of acute and chronic cardiovascular disease. A soluble form of FAP has been detected in human plasma, and low circulating FAP concentrations are associated with increased risk of death in patients with acute coronary syndrome. However, little is known about the regulation and release of FAP from fibroblasts, and whether circulating FAP concentration is associated with tissue FAP expression. This study characterizes the release of FAP in human cardiac fibroblasts (CF) and analyzes the association of circulating FAP concentrations with in vivo tissue FAP expression in patients with acute (ST-segment elevation myocardial infarction, STEMI) and chronic (severe aortic stenosis, AS) myocardial FAP expression. METHODS AND RESULTS: FAP was released from CF in a time- and concentration-dependent manner. FAP concentration was higher in supernatant of TGFß-stimulated CF, and correlated with cellular FAP concentration. Inhibition of metallo- and serine-proteases diminished FAP release in vitro. Median FAP concentrations of patients with acute (77 ng/mL) and chronic (75 ng/mL, p = 0.50 vs. STEMI) myocardial FAP expression did not correlate with myocardial nor extra-myocardial nor total FAP volume (P ≥ 0.61 in all cases) measured by whole-body FAP-targeted positron emission tomography. CONCLUSION: We describe a time- and concentration dependent, protease-mediated release of FAP from cardiac fibroblasts. Circulating FAP concentrations were not associated with increased in vivo tissue FAP expression determined by molecular imaging in patients with both chronic and acute myocardial FAP expression. These data suggest that circulating FAP and tissue FAP expression provide complementary, non-interchangeable information.


Subject(s)
Endopeptidases , Gelatinases , Membrane Proteins , Molecular Imaging , Myocardium , Serine Endopeptidases , Humans , Serine Endopeptidases/metabolism , Serine Endopeptidases/blood , Serine Endopeptidases/biosynthesis , Endopeptidases/metabolism , Membrane Proteins/metabolism , Membrane Proteins/biosynthesis , Membrane Proteins/blood , Male , Gelatinases/metabolism , Gelatinases/biosynthesis , Gelatinases/blood , Female , Aged , Middle Aged , Myocardium/metabolism , Myocardium/pathology , Molecular Imaging/methods , Fibroblasts/metabolism , Cells, Cultured , ST Elevation Myocardial Infarction/blood , ST Elevation Myocardial Infarction/metabolism , ST Elevation Myocardial Infarction/diagnostic imaging , Biomarkers/blood , Biomarkers/metabolism
2.
Basic Res Cardiol ; 104(6): 773-9, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19548059

ABSTRACT

Nitric oxide (NO) is an important regulator of vascular and myocardial function. Cardiac ischemia/reperfusion injury is reduced in mice overexpressing endothelial NO synthase (eNOS) suggesting cardioprotection by eNOS. Novel pharmacological substances, so called eNOS enhancers, upregulate eNOS expression and thereby increase NO production. We tested the effects of the eNOS enhancer AVE 9488 on cardiac ischemia/reperfusion injury in vivo in mice. After treatment with the eNOS enhancer AVE 9488 (30 mg/kg/day) or placebo for one week mice underwent 30 min of coronary artery ligation and 24 h of reperfusion in vivo. Ischemia-reperfusion damage was significantly reduced in mice treated with the eNOS enhancer when compared to placebo treated mice (infarct/area at risk 65.4 +/- 4.1 vs. 36.9 +/- 4.0%, placebo vs. eNOS enhancer, P = 0.0002). The protective effect was blunted in eNOS knockout mice treated with the eNOS enhancer (infarct/area at risk 64.1 +/- 6.2%, eNOS knockout + eNOS enhancer vs. WT + eNOS enhancer, P = ns). Reactive oxygen species were significantly reduced in mice treated with the eNOS enhancer as indicated by significantly lower malondialdehyde-thiobarbituric acid levels (placebo vs. eNOS enhancer, 3.2 +/- 0.5 vs. 0.8 +/- 0.07 micromol/l, P = 0.0003). Thus pharmacological interventions addressed to increase eNOS-derived NO production constitute a promising therapeutic approach to prevent myocardial ischemia/reperfusion injury.


Subject(s)
Benzamides/pharmacology , Myocardial Reperfusion Injury/prevention & control , Nitric Oxide Synthase Type III/metabolism , Animals , Cell Adhesion Molecules/metabolism , Female , Hemodynamics/drug effects , Immunohistochemistry , Mice , Mice, Inbred C57BL , Mice, Knockout , Microfilament Proteins/metabolism , Myocardial Reperfusion Injury/pathology , Nitric Oxide Synthase Type III/drug effects , Oxidative Stress/drug effects , Phosphoproteins/metabolism , Phosphorylation , Up-Regulation
3.
Eur J Nucl Med Mol Imaging ; 32(11): 1324-8, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16133376

ABSTRACT

PURPOSE: The new beta2 radioligand (R,R)(S,S) 5-(2-(2-[4-(2-[18F]fluoroethoxy)phenyl]-1-methylethylamino)-1-hydroxyethyl)-benzene-1,3-diol ([18F]FE-fenoterol; [18F]FEFE), a fluoroethylated derivative of racemic fenoterol, was evaluated in vivo and ex vivo using a guinea pig model. METHODS: Dynamic PET studies over 60 min with [(18)F]FEFE were performed in nine Hartley guinea pigs in which a baseline (group 1, n=3), a predose (group 2, n=3; 2 mg/kg fenoterol 5 min prior to injection of [18F]FEFE) or a displacement study (group 3, n=3; 2 mg/kg fenoterol 5 min post injection of [18F]FEFE) was conducted. RESULTS: In all animal groups, the lungs could be visualised and semi-quantified separately by calculating uptake ratios to non-specific binding in the neck area. Premedication with non-radioactive fenoterol and displacement tests showed significant reduction of lung uptake, by 94% and 76%, respectively. CONCLUSION: These data demonstrate specific binding of the new radioligand to the pulmonary beta2-receptors in accordance with ex vivo measurements. Therefore, [18F]FEFE seems to be suitable for the in vivo visualisation and quantification of the pulmonary beta2-receptor binding in this animal model.


Subject(s)
Fenoterol/analogs & derivatives , Lung/diagnostic imaging , Lung/metabolism , Receptors, Adrenergic, beta-2/metabolism , Animals , Feasibility Studies , Fenoterol/pharmacokinetics , Guinea Pigs , Metabolic Clearance Rate , Models, Animal , Organ Specificity , Radionuclide Imaging , Radiopharmaceuticals/pharmacokinetics , Tissue Distribution
4.
Acta Anaesthesiol Scand ; 48(8): 951-9, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15315611

ABSTRACT

BACKGROUND: Hemodilution reduces hematocrit (Hct) and blood oxygen content. Tissue oxygenation is mainly preserved by increased cardiac output. As myocardial O2-demands increase, coronary vasodilatation becomes necessary to increase myocardial blood flow. Myocardial ischemia occurs at a critical Hct-value (Hctcrit), with accompanying exhaustion of coronary reserve. Hyperoxic ventilation is known to both reverse peripheral tissue hypoxia at Hctcrit and also to induce coronary vasoconstriction. This study aimed to determine whether hyperoxic ventilation at Hctcrit further exacerbates myocardial ischemia and dysfunction. METHODS: Nine anesthetized pigs ventilated on room air were hemodiluted by 1:1 exchange of blood with pentastarch (6%HES) to Hctcrit, defined as onset of myocardial ischemia (ECG changes). At Hctcrit, hyperoxic ventilation was started. Measurements were performed at baseline, at Hctcrit, and after 15 min of hyperoxic ventilation. We determined myocardial blood flow (microsphere method), arterial O2-content, subendocardial O2-delivery and myocardial function (left ventricular pressure increase). RESULTS: At Hctcrit 7 (6;8)%, O2-content was reduced [3.7 (3.1;3.9) ml dl(-1)]. Despite a compensatory increase of myocardial blood flow [531 (449;573), ml min(-1)100 g(-1)], all pigs displayed myocardial ischemia and compromised myocardial function (P < 0.05). Hyperoxic ventilation produced increased coronary vascular resistance secondary to vasoconstriction, and reduced myocardial blood flow [426 (404;464), ml min(-1)100 g(-1); P < 0.05]. Myocardial oxygenation was found to be maintained by increased O2-content [4.4 (4.2;4.8), ml dl(-1); P < 0.05], the contribution of dissolved O2 to subendocardial O2-delivery increased (32 vs. 8%; P < 0.05), which preserved myocardial function. CONCLUSION: Hyperoxic ventilation at Hctcrit is followed by coronary vasoconstriction and reduction of coronary blood flow. However, myocardial oxygenation and function is maintained, as increased O2-content (in particular dissolved O2) preserves myocardial oxygenation.


Subject(s)
Coronary Circulation/drug effects , Heart/physiopathology , Hyperoxia/physiopathology , Oxygen Inhalation Therapy , Respiration, Artificial , Animals , Electrocardiography/drug effects , Heart Function Tests , Hematocrit , Hemodilution , Hydroxyethyl Starch Derivatives/therapeutic use , Myocardial Ischemia/physiopathology , Oxygen Consumption/physiology , Oxygen Inhalation Therapy/adverse effects , Plasma Substitutes/therapeutic use , Swine , Vascular Resistance/physiology , Vasoconstriction/physiology , Ventricular Function, Left/physiology
5.
Resuscitation ; 56(3): 289-97, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12628560

ABSTRACT

OBJECTIVE: During normovolaemic haemodilution arterial O(2)-content decreases exponentially. Nevertheless, tissue oxygenation is first maintained initially by increased organ perfusion and O(2)-extraction. As soon as these compensatory mechanisms are exhausted, myocardial ischaemia and tissue hypoxia occur at an individual 'critical' haematocrit (Hct) value. This study was conducted in order to assess whether tissue hypoxia at the critical Hct is reversed by hyperoxic ventilation with 100% O(2). METHOD: Eighteen anaesthetized pigs were ventilated with room air and were hemodiluted by 1:1 exchange of blood with 6% pentastarch to their individual critical Hct (onset of myocardial ischaemia; significant ECG changes). At the critical Hct, hyperoxic ventilation was initiated. In nine complete datasets, global O(2) delivery and consumption, local tissue O(2) partial pressure (tpO(2)) (MDO-Electrode, Eschweiler, Kiel, Germany) and organ blood flow (microsphere method) in skeletal muscle were analyzed at baseline, after haemodilution to the critical Hct and after 15 min of hyperoxic ventilation. RESULTS: At the critical Hct (7.2+/-1.2%), tpO(2) was reduced from 23+/-3 to 10+/-2 Torr with 50% of all values in the hypoxic range (<10 Torr, all P<0.05). During hyperoxic ventilation, contribution of physically dissolved O(2) to the O(2) delivery and O(2) consumption increased by 400 and 563% (P<0.05) and instantly restored tpO(2) to 18+/-2 Torr, (hypoxic values 25%, P<0.05). CONCLUSION: Hyperoxic ventilation reversed tissue hypoxia at the critical Hct due to preferential utilization of plasma O(2) and allowed temporary preservation of tissue oxygenation. During haemodilution, hyperoxic ventilation might offer an effective bridge until red cells are ready for transfusion.


Subject(s)
Hematocrit , Hemodilution , Oxygen Inhalation Therapy , Oxygen/blood , Animals , Cell Hypoxia , Coronary Circulation , Electrocardiography , Hemodilution/adverse effects , Hemodynamics , Hyperoxia , Muscle, Skeletal/metabolism , Myocardial Ischemia/blood , Myocardial Ischemia/metabolism , Myocardial Ischemia/physiopathology , Oxygen Consumption , Partial Pressure , Swine , Vasoconstriction
6.
Crit Care Med ; 29(4): 829-38, 2001 Apr.
Article in English | MEDLINE | ID: mdl-11373478

ABSTRACT

BACKGROUND: Normovolemic hemodilution is an effective strategy to limit perioperative homologous blood transfusions. The reduction of hematocrit related to hemodilution results in reduced arterial oxygen content, which initially is compensated for by an increase in cardiac output and oxygen extraction ratio. To increase the efficacy of hemodilution, a low hematocrit should be aimed for; however, this implies the risk of myocardial ischemia and tissue hypoxia. OBJECTIVE: To assess whether hemodilution can be extended to lower hematocrit values by the use of a hemoglobin-based artificial oxygen carrier solution. DESIGN: Prospective, randomized, controlled. SETTING: Animal laboratory of a university hospital. SUBJECTS: Twelve anesthetized, mechanically ventilated pigs. INTERVENTIONS: Isovolemic hemodilution was performed with either 10% diaspirin crosslinked hemoglobin (DCLHb Baxter Healthcare, Boulder, CO; n = 6) or 8% human albumin solution (HSA, oncotically matched to DCLHb, Baxter Healthcare; n = 6) to a hematocrit of 15%, 8%, 4%, 2%, and 1%. MEASUREMENTS AND MAIN RESULTS: In both groups, measurements were performed at baseline at the previously mentioned preset hematocrit values and at the onset of myocardial ischemia characterized by critical hematocrit (significant ST-segment depression >0.1 mV and/or arrhythmia). To determine peripheral tissue oxygenation and myocardial perfusion and function, the following variables were evaluated: total body oxygen transport variables, tissue oxygen partial pressure (tPo2, MDO-Electrode, Eschweiler Kiel, Germany) on the surface of the skeletal muscle, coronary perfusion pressure, left ventricular (LV) end-diastolic pressure, global and regional myocardial contractility (maximal change in pressure over time, LV segmental shortening, microsonometry method), LV myocardial blood flow (fluorescent microsphere technique), LV oxygen delivery, and the ratio between LV subendocardial and subepicardial myocardial perfusion. In the HSA group, critical hematocrit was found at 6.1 (1.8)% (hemoglobin, 2 g x dL(-1)), whereas all DCLHb-treated animals survived hemodilution until hematocrit 1.2 (0.2)% (hemoglobin, 4.7 g x dL(-1)) was achieved without signs of hemodynamic instability. Although arterial oxygen content was higher in the DCLHb group at 1.2% hematocrit than in the HSA group at critical hematocrit (i.e., hematocrit, 6.1%; hemoglobin, 2 g.dL-1) neither oxygen delivery and oxygen uptake nor median tPo2 and hypoxic tPo2 values on the skeletal muscle were different between groups. In contrast, subendocardial ischemia was absent in DCLHb-diluted animals until 1.2% hematocrit was achieved. This was attributable to a higher coronary perfusion pressure (65 (22) mm Hg vs. 19 (8) mm Hg; p <.05), higher subendocardial perfusion (4.1 (2.6) mL.min-1.g-1 vs. 1.2 (0.4) mL x min(-1) x g(-1)), and subendocardial oxygen delivery (5.7 (2) mL x min(-1) x g(-1), p <.05) in DCLHb-diluted animals, resulting in superior myocardial contractility reflected by maximal change in pressure over time (3829 (1914) vs. 1678 (730); p <.05) and higher regional myocardial contractility (11 (8)% vs. 6 (2)%; p <.05). An increased LV end-diastolic pressure reflected LV myocardial pump failure in HSA-diluted animals but was unchanged in DCLHb-diluted animals. In the DCLHb group, systemic vascular resistance index remained at baseline values throughout the protocol, whereas coronary vascular resistance decreased. In contrast, both variables decreased in HSA-diluted animals. CONCLUSION: DCLHb as a diluent allowed for hemodilution beyond the hematocrit value, determined "critical" after hemodilution with HSA (6.1% (1.8)%). Even at 1.2% hematocrit (hemoglobin, 4.7 g x dL(-1)) myocardial perfusion and function were maintained, although at the expense of peripheral tissue oxygenation. This discrepancy in regional oxygenation might be caused by a redistribution of blood flow favoring the heart, which is related to a disproportionate decrease of coronary vascular resistance index during hemodilution with DCLHb.


Subject(s)
Aspirin/pharmacology , Hematocrit , Hemodilution , Hemoglobins/pharmacology , Oxygen Consumption , Animals , Aspirin/analogs & derivatives , Blood Volume , Coronary Circulation/drug effects , Hemodynamics/drug effects , Humans , Myocardial Contraction/drug effects , Serum Albumin/pharmacology , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...