Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 298(8): 102159, 2022 08.
Article in English | MEDLINE | ID: mdl-35750212

ABSTRACT

Lysosomal storage diseases result in various developmental and physiological complications, including cachexia. To study the causes for the negative energy balance associated with cachexia, we assessed the impact of sulfamidase deficiency and heparan sulfate storage on energy homeostasis and metabolism in a mouse model of type IIIa mucopolysaccharidosis (MPS IIIa, Sanfilippo A syndrome). At 12-weeks of age, MPS IIIa mice exhibited fasting and postprandial hypertriglyceridemia compared with wildtype mice, with a reduction of white and brown adipose tissues. Partitioning of dietary [3H]triolein showed a marked increase in intestinal uptake and secretion, whereas hepatic production and clearance of triglyceride-rich lipoproteins did not differ from wildtype controls. Uptake of dietary triolein was also elevated in brown adipose tissue (BAT), and notable increases in beige adipose tissue occurred, resulting in hyperthermia, hyperphagia, hyperdipsia, and increased energy expenditure. Furthermore, fasted MPS IIIa mice remained hyperthermic when subjected to low temperature but became cachexic and profoundly hypothermic when treated with a lipolytic inhibitor. We demonstrated that the reliance on increased lipid fueling of BAT was driven by a reduced ability to generate energy from stored lipids within the depot. These alterations arose from impaired autophagosome-lysosome fusion, resulting in increased mitochondria content in beige and BAT. Finally, we show that increased mitochondria content in BAT and postprandial dyslipidemia was partially reversed upon 5-week treatment with recombinant sulfamidase. We hypothesize that increased BAT activity and persistent increases in energy demand in MPS IIIa mice contribute to the negative energy balance observed in patients with MPS IIIa.


Subject(s)
Hypertriglyceridemia , Mucopolysaccharidosis III , Adipose Tissue, Brown/metabolism , Animals , Cachexia , Mice , Mitophagy , Mucopolysaccharidosis III/metabolism , Mucopolysaccharidosis III/therapy , Triolein
2.
Development ; 144(13): 2504-2516, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28676569

ABSTRACT

Visual information is relayed from the eye to the brain via retinal ganglion cell (RGC) axons. Mice lacking NRP1 or NRP1-binding VEGF-A isoforms have defective RGC axon organisation alongside brain vascular defects. It is not known whether axonal defects are caused exclusively by defective VEGF-A signalling in RGCs or are exacerbated by abnormal vascular morphology. Targeted NRP1 ablation in RGCs with a Brn3bCre knock-in allele reduced axonal midline crossing at the optic chiasm and optic tract fasciculation. In contrast, Tie2-Cre-mediated endothelial NRP1 ablation induced axon exclusion zones in the optic tracts without impairing axon crossing. Similar defects were observed in Vegfa120/120 and Vegfa188/188 mice, which have vascular defects as a result of their expression of single VEGF-A isoforms. Ectopic midline vascularisation in endothelial Nrp1 and Vegfa188/188 mutants caused additional axonal exclusion zones within the chiasm. As in vitro and in vivo assays demonstrated that vessels do not repel axons, abnormally large or ectopically positioned vessels are likely to present physical obstacles to axon growth. We conclude that proper axonal wiring during brain development depends on the precise molecular control of neurovascular co-patterning.


Subject(s)
Axons/metabolism , Blood Vessels/embryology , Blood Vessels/metabolism , Central Nervous System/embryology , Central Nervous System/metabolism , Neuropilin-1/metabolism , Vascular Endothelial Growth Factor A/metabolism , Animals , Body Patterning , Diencephalon/embryology , Diencephalon/metabolism , Endothelial Cells/metabolism , Gene Knockdown Techniques , Homeodomain Proteins/metabolism , Mice, Inbred C57BL , Mutation/genetics , Neovascularization, Physiologic , Optic Chiasm/embryology , Optic Chiasm/metabolism , Retinal Ganglion Cells/metabolism , Transcription Factor Brn-3B/metabolism , Visual Pathways/metabolism
3.
Development ; 143(11): 1907-13, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27048738

ABSTRACT

The correct migration and axon extension of neurons in the developing nervous system is essential for the appropriate wiring and function of neural networks. Here, we report that O-sulfotransferases, a class of enzymes that modify heparan sulfate proteoglycans (HSPGs), are essential to regulate neuronal migration and axon development. We show that the 6-O-sulfotransferases HS6ST1 and HS6ST2 are essential for cranial axon patterning, whilst the 2-O-sulfotransferase HS2ST (also known as HS2ST1) is important to regulate the migration of facial branchiomotor (FBM) neurons in the hindbrain. We have also investigated how HS2ST interacts with other signals in the hindbrain and show that fibroblast growth factor (FGF) signalling regulates FBM neuron migration in an HS2ST-dependent manner.


Subject(s)
Axon Guidance , Cell Movement/drug effects , Motor Neurons/cytology , Proteoglycans/metabolism , Skull/metabolism , Sulfates/metabolism , Animals , Axon Guidance/drug effects , Fibroblast Growth Factors/pharmacology , Mice, Inbred C57BL , Motor Neurons/drug effects , Motor Neurons/metabolism , Skull/drug effects , Sulfotransferases/metabolism , Trigeminal Ganglion/drug effects , Trigeminal Ganglion/metabolism , Vascular Endothelial Growth Factor A/pharmacology
4.
Development ; 142(2): 314-9, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25519242

ABSTRACT

The vascular endothelial growth factor (VEGFA, VEGF) regulates neurovascular patterning. Alternative splicing of the Vegfa gene gives rise to three major isoforms termed VEGF121, VEGF165 and VEGF189. VEGF165 binds the transmembrane protein neuropilin 1 (NRP1) and promotes the migration, survival and axon guidance of subsets of neurons, whereas VEGF121 cannot activate NRP1-dependent neuronal responses. By contrast, the role of VEGF189 in NRP1-mediated signalling pathways has not yet been examined. Here, we have combined expression studies and in situ ligand-binding assays with the analysis of genetically altered mice and in vitro models to demonstrate that VEGF189 can bind NRP1 and promote NRP1-dependent neuronal responses.


Subject(s)
Brain/embryology , Models, Neurological , Neurons/physiology , Neuropilin-1/metabolism , Vascular Endothelial Growth Factor A/metabolism , Animals , Brain/cytology , In Situ Hybridization , Mice , Oligonucleotides/genetics , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA
5.
J Vis Exp ; (85)2014 Mar 18.
Article in English | MEDLINE | ID: mdl-24686480

ABSTRACT

Embryonic neurons are born in the ventricular zone of the brain, but subsequently migrate to new destinations to reach appropriate targets. Deciphering the molecular signals that cooperatively guide neuronal migration in the embryonic brain is therefore important to understand how the complex neural networks form which later support postnatal life. Facial branchiomotor (FBM) neurons in the mouse embryo hindbrain migrate from rhombomere (r) 4 caudally to form the paired facial nuclei in the r6-derived region of the hindbrain. Here we provide a detailed protocol for wholemount ex vivo culture of mouse embryo hindbrains suitable to investigate the signaling pathways that regulate FBM migration. In this method, hindbrains of E11.5 mouse embryos are dissected and cultured in an open book preparation on cell culture inserts for 24 hr. During this time, FBM neurons migrate caudally towards r6 and can be exposed to function-blocking antibodies and small molecules in the culture media or heparin beads loaded with recombinant proteins to examine roles for signaling pathways implicated in guiding neuronal migration.


Subject(s)
Cell Movement/physiology , Facial Nerve/cytology , Neurons/physiology , Organ Culture Techniques/methods , Rhombencephalon/cytology , Animals , Facial Nerve/embryology , Female , Mice , Neurons/cytology , Pregnancy , Rhombencephalon/embryology
6.
Cell Adh Migr ; 6(6): 541-6, 2012.
Article in English | MEDLINE | ID: mdl-23076132

ABSTRACT

Synapse formation, maintenance and plasticity are critical for the correct function of the nervous system and its target organs. During development, these processes enable the establishment of appropriate neural circuits. During adulthood, they allow adaptation to both physiological and environmental changes. In this review, we discuss emerging roles for two families of classical axon and vascular guidance cues in synaptogenesis and synaptic plasticity, the semaphorins and the vascular endothelial growth factors (VEGFs). Their contribution to synapse formation and function add a new facet to the spectrum of overlapping and complementary roles for these molecules in development, adulthood and disease.


Subject(s)
Motor Neurons/physiology , Neuronal Plasticity , Semaphorin-3A/metabolism , Synapses/metabolism , Vascular Endothelial Growth Factor A/metabolism , Animals , Calcium Signaling , Cells, Cultured , Excitatory Postsynaptic Potentials , Hippocampus/metabolism , Hippocampus/physiology , Mice , Motor Neurons/metabolism , Neurogenesis , Semaphorin-3A/genetics , Synapses/physiology , Synaptic Transmission , Vascular Endothelial Growth Factor Receptor-1/genetics , Vascular Endothelial Growth Factor Receptor-1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...