Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Cells ; 12(9)2023 04 29.
Article in English | MEDLINE | ID: mdl-37174684

ABSTRACT

Eukaryotic cells maintain cellular fitness by employing well-coordinated and evolutionarily conserved processes that negotiate stress induced by internal or external environments. These processes include the unfolded protein response, autophagy, endoplasmic reticulum-associated degradation (ERAD) of unfolded proteins and altered mitochondrial functions that together constitute the ER stress response. Here, we show that the RNA demethylase ALKBH5 regulates the crosstalk among these processes to maintain normal ER function. We demonstrate that ALKBH5 regulates ER homeostasis by controlling the expression of ER lipid raft associated 1 (ERLIN1), which binds to the activated inositol 1, 4, 5,-triphosphate receptor and facilitates its degradation via ERAD to maintain the calcium flux between the ER and mitochondria. Using functional studies and electron microscopy, we show that ALKBH5-ERLIN-IP3R-dependent calcium signaling modulates the activity of AMP kinase, and consequently, mitochondrial biogenesis. Thus, these findings reveal that ALKBH5 serves an important role in maintaining ER homeostasis and cellular fitness.


Subject(s)
Endoplasmic Reticulum Stress , Endoplasmic Reticulum-Associated Degradation , AlkB Homolog 5, RNA Demethylase/metabolism , Autophagy , Endoplasmic Reticulum/metabolism , Signal Transduction , Mitochondria/metabolism , Homeostasis
2.
Cancer Lett ; 540: 215717, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35568265

ABSTRACT

Aberrant activities of various cell cycle and DNA repair proteins promote cancer growth and progression and render them resistant to therapies. Here, we demonstrate that the anti-depressant imipramine blocks growth of triple-negative (TNBC) and estrogen receptor-positive (ER+) breast cancers by inducing cell cycle arrest and by blocking heightened homologous recombination (HR) and non-homologous end joining-mediated (NHEJ) DNA repair activities. Our results reveal that imipramine inhibits the expression of several cell cycle- and DNA repair-associated proteins including E2F1, CDK1, Cyclin D1, and RAD51. In addition, we show that imipramine inhibits the growth of ER + breast cancers by inhibiting the estrogen receptor- α (ER-α) signaling. Our studies in preclinical mouse models and ex vivo explants from breast cancer patients show that imipramine sensitizes TNBC to the PARP inhibitor olaparib and endocrine resistant ER + breast cancer to anti-estrogens. Our studies suggest that repurposing imipramine could enhance routine care for breast cancer patients. Based on these results, we designed an ongoing clinical trial, where we are testing the efficacy of imipramine for treating patients with triple-negative and estrogen receptor-positive breast cancer. Since aberrant DNA repair activity is used by many cancers to survive and become resistant to therapy, imipramine could be used alone and/or with currently used drugs for treating many aggressive cancers.


Subject(s)
Breast Neoplasms , Triple Negative Breast Neoplasms , Animals , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Cell Line, Tumor , Cell Proliferation , DNA Repair , Female , Humans , Imipramine/pharmacology , Imipramine/therapeutic use , Mice , Receptors, Estrogen/metabolism , Triple Negative Breast Neoplasms/genetics
3.
Commun Biol ; 5(1): 493, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35610507

ABSTRACT

The major limitations of DNA-targeting chemotherapy drugs include life-threatening toxicity, acquired resistance and occurrence of secondary cancers. Here, we report a small molecule, Carbazole Blue (CB), that binds to DNA and inhibits cancer growth and metastasis by targeting DNA-related processes that tumor cells use but not the normal cells. We show that CB inhibits the expression of pro-tumorigenic genes that promote unchecked replication and aberrant DNA repair that cancer cells get addicted to survive. In contrast to chemotherapy drugs, systemic delivery of CB suppressed breast cancer growth and metastasis with no toxicity in pre-clinical mouse models. Using PDX and ex vivo explants from estrogen receptor (ER) positive, ER mutant and TNBC patients, we further demonstrated that CB effectively blocks therapy-sensitive and therapy-resistant breast cancer growth without affecting normal breast tissue. Our data provide a strong rationale to develop CB as a viable therapeutic for treating breast cancers.


Subject(s)
Breast Neoplasms , Animals , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , DNA , DNA Repair , Female , Humans , Mice , Receptors, Estrogen/metabolism
4.
Cancer Res ; 82(10): 1872-1889, 2022 05 16.
Article in English | MEDLINE | ID: mdl-35303054

ABSTRACT

Osteosarcoma is the most common malignancy of the bone, yet the survival for patients with osteosarcoma is virtually unchanged over the past 30 years. This is principally because development of new therapies is hampered by a lack of recurrent mutations that can be targeted in osteosarcoma. Here, we report that epigenetic changes via mRNA methylation holds great promise to better understand the mechanisms of osteosarcoma growth and to develop targeted therapeutics. In patients with osteosarcoma, the RNA demethylase ALKBH5 was amplified and higher expression correlated with copy-number changes. ALKBH5 was critical for promoting osteosarcoma growth and metastasis, yet it was dispensable for normal cell survival. Methyl RNA immunoprecipitation sequencing analysis and functional studies showed that ALKBH5 mediates its protumorigenic function by regulating m6A levels of histone deubiquitinase USP22 and the ubiquitin ligase RNF40. ALKBH5-mediated m6A deficiency in osteosarcoma led to increased expression of USP22 and RNF40 that resulted in inhibition of histone H2A monoubiquitination and induction of key protumorigenic genes, consequently driving unchecked cell-cycle progression, incessant replication, and DNA repair. RNF40, which is historically known to ubiquitinate H2B, inhibited H2A ubiquitination in cancer by interacting with and affecting the stability of DDB1-CUL4-based ubiquitin E3 ligase complex. Taken together, this study directly links increased activity of ALKBH5 with dysregulation of USP22/RNF40 and histone ubiquitination in cancers. More broadly, these results suggest that m6A RNA methylation works in concert with other epigenetic mechanisms to control cancer growth. SIGNIFICANCE: RNA demethylase ALKBH5 upregulates USP22 and RNF40 to inhibit histone H2A ubiquitination and induces expression of key replication and DNA repair-associated genes, driving osteosarcoma progression.


Subject(s)
AlkB Homolog 5, RNA Demethylase , Osteosarcoma , AlkB Homolog 5, RNA Demethylase/genetics , Histones/metabolism , Humans , Methylation , Osteosarcoma/genetics , RNA/genetics , RNA/metabolism , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism , Ubiquitination , Ubiquitins/genetics
5.
Nat Commun ; 9(1): 4541, 2018 10 31.
Article in English | MEDLINE | ID: mdl-30382096

ABSTRACT

Despite improvements in overall survival, only a modest percentage of patients survives high-risk medulloblastoma. The devastating side effects of radiation and chemotherapy substantially reduce quality of life for surviving patients. Here, using genomic screens, we identified miR-584-5p as a potent therapeutic adjuvant that potentiates medulloblastoma to radiation and vincristine. MiR-584-5p inhibited medulloblastoma growth and prolonged survival of mice in pre-clinical tumor models. MiR-584-5p overexpression caused cell cycle arrest, DNA damage, and spindle defects in medulloblastoma cells. MiR-584-5p mediated its tumor suppressor and therapy-sensitizing effects by targeting HDAC1 and eIF4E3. MiR-584-5p overexpression or HDAC1/eIF4E3 silencing inhibited medulloblastoma stem cell self-renewal without affecting neural stem cell growth. In medulloblastoma patients, reduced expression of miR-584-5p correlated with increased levels of HDAC1/eIF4E3. These findings identify a previously undefined role for miR-584-5p/HDAC1/eIF4E3 in regulating DNA repair, microtubule dynamics, and stemness in medulloblastoma and set the stage for a new way to treat medulloblastoma using miR-584-5p.


Subject(s)
Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/pathology , DNA Damage , Medulloblastoma/genetics , Medulloblastoma/pathology , MicroRNAs/metabolism , Spindle Apparatus/metabolism , Vincristine/pharmacology , Animals , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Eukaryotic Initiation Factor-4E/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Histone Deacetylase 1/metabolism , Mice, Nude , MicroRNAs/genetics , Microtubules/drug effects , Microtubules/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Radiation, Ionizing , Signal Transduction/drug effects , Spindle Apparatus/drug effects , Spindle Apparatus/radiation effects
6.
Sci Adv ; 4(10): eaar8263, 2018 10.
Article in English | MEDLINE | ID: mdl-30306128

ABSTRACT

The importance of RNA methylation in biological processes is an emerging focus of investigation. We report that altering m6A levels by silencing either N 6-adenosine methyltransferase METTL14 (methyltransferase-like 14) or demethylase ALKBH5 (ALKB homolog 5) inhibits cancer growth and invasion. METTL14/ALKBH5 mediate their protumorigenic function by regulating m6A levels of key epithelial-mesenchymal transition and angiogenesis-associated transcripts, including transforming growth factor-ß signaling pathway genes. Using MeRIP-seq (methylated RNA immunoprecipitation sequencing) analysis and functional studies, we find that these target genes are particularly sensitive to changes in m6A modifications, as altered m6A status leads to aberrant expression of these genes, resulting in inappropriate cell cycle progression and evasion of apoptosis. Our results reveal that METTL14 and ALKBH5 determine the m6A status of target genes by controlling each other's expression and by inhibiting m6A reader YTHDF3 (YTH N 6-methyladenosine RNA binding protein 3), which blocks RNA demethylase activity. Furthermore, we show that ALKBH5/METTL14 constitute a positive feedback loop with RNA stability factor HuR to regulate the stability of target transcripts. We discover that hypoxia alters the level/activity of writers, erasers, and readers, leading to decreased m6A and consequently increased expression of target transcripts in cancer cells. This study unveils a previously undefined role for m6A in cancer and shows that the collaboration among writers-erasers-readers sets up the m6A threshold to ensure the stability of progrowth/proliferation-specific genes, and protumorigenic stimulus, such as hypoxia, perturbs that m6A threshold, leading to uncontrolled expression/activity of those genes, resulting in tumor growth, angiogenesis, and progression.


Subject(s)
Adenosine/analogs & derivatives , AlkB Homolog 5, RNA Demethylase/metabolism , Methyltransferases/metabolism , Neoplasms/pathology , RNA-Binding Proteins/metabolism , Adenosine/genetics , Adenosine/metabolism , AlkB Homolog 5, RNA Demethylase/genetics , Animals , Cell Cycle/genetics , Cell Line, Tumor , ELAV-Like Protein 1/genetics , ELAV-Like Protein 1/metabolism , Feedback, Physiological , Female , Gene Expression Regulation, Neoplastic , Humans , Methyltransferases/genetics , Mice, Nude , Neoplasms/genetics , Neoplasms/metabolism , Neovascularization, Pathologic/genetics , RNA-Binding Proteins/genetics , Tumor Hypoxia/genetics , Xenograft Model Antitumor Assays
7.
Int J Genomics ; 2018: 1351964, 2018.
Article in English | MEDLINE | ID: mdl-30009162

ABSTRACT

BACKGROUND: Compared with the well-studied 5-methylcytosine (m5C) in DNA, the role and topology of epitranscriptome m5C remain insufficiently characterized. RESULTS: Through analyzing transcriptome-wide m5C distribution in human and mouse, we show that the m5C modification is significantly enriched at 5' untranslated regions (5'UTRs) of mRNA in human and mouse. With a comparative analysis of the mRNA and DNA methylome, we demonstrate that, like DNA methylation, transcriptome m5C methylation exhibits a strong clustering effect. Surprisingly, an inverse correlation between mRNA and DNA m5C methylation is observed at CpG sites. Further analysis reveals that RNA m5C methylation level is positively correlated with both RNA expression and RNA half-life. We also observed that the methylation level of mitochondrial RNAs is significantly higher than RNAs transcribed from the nuclear genome. CONCLUSIONS: This study provides an in-depth topological characterization of transcriptome-wide m5C modification by associating RNA m5C methylation patterns with transcriptional expression, DNA methylations, RNA stabilities, and mitochondrial genome.

8.
Oncotarget ; 8(49): 85984-85996, 2017 Oct 17.
Article in English | MEDLINE | ID: mdl-29156771

ABSTRACT

Deregulation of apoptosis is central to cancer progression and a major obstacle to effective treatment. The Bcl-2 gene family members play important roles in the regulation of apoptosis and are frequently altered in cancers. One such member is pro-apoptotic protein Bcl-2-related Ovarian Killer (BOK). Despite its critical role in apoptosis, the regulation of BOK expression is poorly understood in cancers. Here, we discovered that miR-296-5p regulates BOK expression by binding to its 3'-UTR in breast cancers. Interestingly, miR-296-5p also regulates the expression of anti-apoptotic protein myeloid cell leukemia 1 (Mcl-1), which is highly expressed in breast cancers. Our results reveal that Mcl-1 and BOK constitute a regulatory feedback loop as ectopic BOK expression induces Mcl-1, whereas silencing of Mcl-1 results in reduced BOK levels in breast cancer cells. In addition, we show that silencing of Mcl-1 but not BOK reduced the long-term growth of breast cancer cells. Silencing of both Mcl-1 and BOK rescued the effect of Mcl-1 silencing on breast cancer cell growth, suggesting that BOK is important for attenuating cell growth in the absence of Mcl-1. Depletion of BOK suppressed caspase-3 activation in the presence of paclitaxel and in turn protected cells from paclitaxel-induced apoptosis. Furthermore, we demonstrate that glycogen synthase kinase (GSK3) α/ß interacts with BOK and regulates its level post-translationally in breast cancer cells. Taken together, our results suggest that fine tuning of the levels of pro-apoptotic protein BOK and anti-apoptotic protein Mcl-1 may decide the fate of cancer cells to either undergo apoptosis or proliferation.

9.
PLoS One ; 12(11): e0188064, 2017.
Article in English | MEDLINE | ID: mdl-29145442

ABSTRACT

A major challenge is to understand maladaptive changes in ion channels that sets neurons on a course towards epilepsy development. Voltage- and calcium-activated K+ (BK) channels contribute to early spike timing in neurons, and studies indicate that the BK channel plays a pathological role in increasing excitability early after a seizure. Here, we have investigated changes in BK channels and their accessory ß4 subunit (KCNMB4) in dentate gyrus (DG) granule neurons of the hippocampus, key neurons that regulate excitability of the hippocampus circuit. Two days after pilocarpine-induced seizures, we found that the predominant effect is a downregulation of the ß4 accessory subunit mRNA. Consistent with reduced expression, single channel recording and pharmacology indicate a switch in the subtype of channels expressed; from iberiotoxin-resistant, type II BK channels (BK α/ß4) that have higher channel open probability and slow gating, to iberiotoxin-sensitive type I channels (BK α alone) with low open probability and faster gating. The switch to a majority of type I channel expression following seizure activity is correlated with a loss of BK channel function on spike threshold while maintaining the channel's contribution to increased early spike frequency. Using heterozygous ß4 knockout mice, we find reduced expression is sufficient to increase seizure sensitivity. We conclude that seizure-induced downregulation of KCNMB4 is an activity dependent mechanism that increases the excitability of DG neurons. These novel findings indicate that BK channel subtypes are not only defined by cell-specific expression, but can also be plastic depending on the recent history of neuronal excitability.


Subject(s)
Down-Regulation , Hippocampus/metabolism , Large-Conductance Calcium-Activated Potassium Channel beta Subunits/genetics , Large-Conductance Calcium-Activated Potassium Channels/metabolism , Neurons/metabolism , Seizures/metabolism , Action Potentials , Animals , Hippocampus/pathology , Hippocampus/physiopathology , Large-Conductance Calcium-Activated Potassium Channels/classification , Mice , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction
10.
Nat Commun ; 8(1): 598, 2017 09 19.
Article in English | MEDLINE | ID: mdl-28928467

ABSTRACT

Phagocytic clearance of apoptotic germ cells by Sertoli cells is vital for germ cell development and differentiation. Here, using a tissue-specific miRNA transgenic mouse model, we show that interaction between miR-471-5p and autophagy member proteins regulates clearance of apoptotic germ cells via LC3-associated phagocytosis (LAP). Transgenic mice expressing miR-471-5p in Sertoli cells show increased germ cell apoptosis and compromised male fertility. Those effects are due to defective engulfment and impaired LAP-mediated clearance of apoptotic germ cells as miR-471-5p transgenic mice show lower levels of Dock180, LC3, Atg12, Becn1, Rab5 and Rubicon in Sertoli cells. Our results reveal that Dock180 interacts with autophagy member proteins to constitute a functional LC3-dependent phagocytic complex. We find that androgen regulates Sertoli cell phagocytosis by controlling expression of miR-471-5p and its target proteins. These findings suggest that recruitment of autophagy machinery is essential for efficient clearance of apoptotic germ cells by Sertoli cells using LAP.Although phagocytic clearance of apoptotic germ cells by Sertoli cells is essential for spermatogenesis, little of the mechanism is known. Here the authors show that Sertoli cells employ LC3-associated phagocytosis (LAP) by recruiting autophagy member proteins to clear apoptotic germ cells.


Subject(s)
Apoptosis/genetics , Autophagy/genetics , MicroRNAs/genetics , Microtubule-Associated Proteins/genetics , Phagocytosis/genetics , Sertoli Cells/metabolism , Animals , Base Sequence , Cell Line , Cells, Cultured , Gene Expression Profiling/methods , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Male , Mice, Transgenic , MicroRNAs/metabolism , Microtubule-Associated Proteins/metabolism , Protein Binding , RNA Interference , Sequence Homology, Nucleic Acid
11.
Clin Cancer Res ; 22(14): 3524-36, 2016 07 15.
Article in English | MEDLINE | ID: mdl-26927663

ABSTRACT

PURPOSE: The approaches aimed at inhibiting the ability of cancer cells to repair DNA strand breaks have emerged as promising targets for treating cancers. Here, we assessed the potential of imipramine blue (IB), a novel analogue of antidepressant imipramine, to suppress breast cancer growth and metastasis by inhibiting the ability of breast cancer cells to repair DNA strand breaks by homologous recombination (HR). EXPERIMENTAL DESIGN: The effect of IB on breast cancer growth and metastasis was assessed in vitro as well as in preclinical mouse models. Besides, the therapeutic efficacy and safety of IB was determined in ex vivo explants from breast cancer patients. The mechanism of action of IB was evaluated by performing gene-expression, drug-protein interaction, cell-cycle, and DNA repair studies. RESULTS: We show that the systemic delivery of IB using nanoparticle-based delivery approach suppressed breast cancer growth and metastasis without inducing toxicity in preclinical mouse models. Using ex vivo explants from breast cancer patients, we demonstrated that IB inhibited breast cancer growth without affecting normal mammary epithelial cells. Furthermore, our mechanistic studies revealed that IB may interact and inhibit the activity of proto-oncogene FoxM1 and associated signaling that play critical roles in HR-mediated DNA repair. CONCLUSIONS: These findings highlight the potential of IB to be applied as a safe regimen for treating breast cancer patients. Given that FoxM1 is an established therapeutic target for several cancers, the identification of a compound that inhibits FoxM1- and FoxM1-mediated DNA repair has immense translational potential for treating many aggressive cancers. Clin Cancer Res; 22(14); 3524-36. ©2016 AACR.


Subject(s)
Breast Neoplasms/drug therapy , Cell Proliferation/drug effects , DNA Repair/drug effects , Forkhead Box Protein M1/metabolism , Imipramine/pharmacology , Neoplasm Metastasis/drug therapy , Animals , Breast Neoplasms/metabolism , Cell Cycle/drug effects , Cell Line, Tumor , DNA Damage/drug effects , Epithelial Cells/drug effects , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , MCF-7 Cells , Mice , Mice, Nude , Neoplasm Metastasis/pathology , Proto-Oncogene Mas
SELECTION OF CITATIONS
SEARCH DETAIL
...