Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Rev Microbiol ; 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39251839

ABSTRACT

Urinary tract infections (UTIs), which include any infection of the urethra, bladder or kidneys, account for an estimated 400 million infections and billions of dollars in health-care spending per year. The most common bacterium implicated in UTI is uropathogenic Escherichia coli, but diverse pathogens including Klebsiella, Enterococcus, Pseudomonas, Staphylococcus and even yeast such as Candida species can also cause UTIs. UTIs occur in both women and men and in both healthy and immunocompromised patients. However, certain patient factors predispose to disease: for example, female sex, history of prior UTI, or the presence of a urinary catheter or other urinary tract abnormality. The current clinical paradigm for the treatment of UTIs involves the use of antibiotics. Unfortunately, the efficacy of this approach is dwindling as the prevalence of antimicrobial resistance rises among UTI isolates, and the immense quantity of antibiotics prescribed annually for these infections contributes to the emergence of resistant pathogens. Therefore, there is an urgent need for new antibiotics and non-antibiotic treatment and prevention strategies. In this Review, we discuss how recent studies of bacterial pathogenesis, recurrence, persistence, host-pathogen interactions and host susceptibility factors have elucidated new and promising targets for the treatment and prevention of UTIs.

2.
Res Sq ; 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37609304

ABSTRACT

Catheter-associated urinary tract infections (CAUTIs) contribute greatly to the burden of healthcare associated infections. Acinetobacter baumannii is a Gram-negative bacterium with high levels of antibiotic resistance that is of increasing concern as a CAUTI pathogen. A. baumannii expresses fibrinogen-binding adhesins (Abp1D and Abp2D) that mediate colonization and biofilm formation on catheters, which become coated with fibrinogen upon insertion. We developed a protein subunit vaccine against Abp1DRBD and Abp2DRBD and showed that vaccination significantly reduced bladder bacterial titers in a mouse model of CAUTI. We then determined that immunity to Abp2DRBD alone was sufficient for protection. Mechanistically, we defined the B cell response to Abp2DRBD vaccination and demonstrated that immunity was transferrable to naïve mice through passive immunization with Abp2DRBD-immune sera. This work represents a novel strategy in the prevention of A. baumannii CAUTI and has an important role to play in the global fight against antimicrobial resistance.

3.
Front Immunol ; 12: 615102, 2021.
Article in English | MEDLINE | ID: mdl-33732238

ABSTRACT

The re-emergence of Zika virus (ZIKV) caused widespread infections that were linked to Guillain-Barré syndrome in adults and congenital malformation in fetuses, and epidemiological data suggest that ZIKV infection can induce protective antibody responses. A more detailed understanding of anti-ZIKV antibody responses may lead to enhanced antibody discovery and improved vaccine designs against ZIKV and related flaviviruses. Here, we applied recently-invented library-scale antibody screening technologies to determine comprehensive functional molecular and genetic profiles of naturally elicited human anti-ZIKV antibodies in three convalescent individuals. We leveraged natively paired antibody yeast display and NGS to predict antibody cross-reactivities and coarse-grain antibody affinities, to perform in-depth immune profiling of IgM, IgG, and IgA antibody repertoires in peripheral blood, and to reveal virus maturation state-dependent antibody interactions. Repertoire-scale comparison of ZIKV VLP-specific and non-specific antibodies in the same individuals also showed that mean antibody somatic hypermutation levels were substantially influenced by donor-intrinsic characteristics. These data provide insights into antiviral antibody responses to ZIKV disease and outline systems-level strategies to track human antibody immune responses to emergent viral infections.


Subject(s)
Antibodies, Viral/immunology , Antibody Formation/immunology , Host-Pathogen Interactions/immunology , Zika Virus Infection/immunology , Zika Virus Infection/virology , Zika Virus/immunology , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/immunology , Antibodies, Viral/genetics , Antibody Formation/genetics , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Computational Biology/methods , Flow Cytometry , High-Throughput Nucleotide Sequencing , Humans , Neutralization Tests , Peptide Library
4.
Nat Biotechnol ; 36(2): 152-155, 2018 02.
Article in English | MEDLINE | ID: mdl-29309060

ABSTRACT

We present a technology to screen millions of B cells for natively paired human antibody repertoires. Libraries of natively paired, variable region heavy and light (VH:VL) amplicons are expressed in a yeast display platform that is optimized for human Fab surface expression. Using our method we identify HIV-1 broadly neutralizing antibodies (bNAbs) from an HIV-1 slow progressor and high-affinity neutralizing antibodies against Ebola virus glycoprotein and influenza hemagglutinin.


Subject(s)
Antibodies, Neutralizing/immunology , B-Lymphocytes/immunology , HIV Antibodies/immunology , HIV Infections/drug therapy , Amino Acid Sequence/genetics , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/therapeutic use , HIV Antibodies/therapeutic use , HIV Infections/virology , HIV-1/immunology , HIV-1/pathogenicity , High-Throughput Nucleotide Sequencing , Humans , Peptide Library
SELECTION OF CITATIONS
SEARCH DETAIL