Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 2385, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38493170

ABSTRACT

Forest soils harbor hyper-diverse microbial communities which fundamentally regulate carbon and nutrient cycling across the globe. Directly testing hypotheses on how microbiome diversity is linked to forest carbon storage has been difficult, due to a lack of paired data on microbiome diversity and in situ observations of forest carbon accumulation and storage. Here, we investigated the relationship between soil microbiomes and forest carbon across 238 forest inventory plots spanning 15 European countries. We show that the composition and diversity of fungal, but not bacterial, species is tightly coupled to both forest biotic conditions and a seven-fold variation in tree growth rates and biomass carbon stocks when controlling for the effects of dominant tree type, climate, and other environmental factors. This linkage is particularly strong for symbiotic endophytic and ectomycorrhizal fungi known to directly facilitate tree growth. Since tree growth rates in this system are closely and positively correlated with belowground soil carbon stocks, we conclude that fungal composition is a strong predictor of overall forest carbon storage across the European continent.


Subject(s)
Mycobiome , Carbon , Soil Microbiology , Forests , Trees/microbiology , Soil
2.
Front Microbiol ; 14: 1154344, 2023.
Article in English | MEDLINE | ID: mdl-37125194

ABSTRACT

Introduction: The ascomycete Hymenoscyphus fraxineus, originating from Asia, is currently threatening common ash (Fraxinus excelsior) in Europe, massive ascospore production from the saprotrophic phase being a key determinant of its invasiveness. Methods: To consider whether fungal diversity and succession in decomposing leaf litter are affected by this invader, we used ITS-1 metabarcoding to profile changes in fungal community composition during overwintering. The subjected ash leaf petioles, collected from a diseased forest and a healthy ash stand hosting the harmless ash endophyte Hymenoscyphus albidus, were incubated in the forest floor of the diseased stand between October 2017 and June 2018 and harvested at 2-3-month intervals. Results: Total fungal DNA level showed a 3-fold increase during overwintering as estimated by FungiQuant qPCR. Petioles from the healthy site showed pronounced changes during overwintering; ascomycetes of the class Dothideomycetes were predominant after leaf shed, but the basidiomycete genus Mycena (class Agaricomycetes) became predominant by April, whereas H. albidus showed low prevalence. Petioles from the diseased site showed little change during overwintering; H. fraxineus was predominant, while Mycena spp. showed increased read proportion by June. Discussion: The low species richness and evenness in petioles from the diseased site in comparison to petioles from the healthy site were obviously related to tremendous infection pressure of H. fraxineus in diseased forests. Changes in leaf litter quality, owing to accumulation of host defense phenolics in the pathogen challenged leaves, and strong saprophytic competence of H. fraxineus are other factors that probably influence fungal succession. For additional comparison, we examined fungal community structure in petioles collected in the healthy stand in August 2013 and showing H. albidus ascomata. This species was similarly predominant in these petioles as H. fraxineus was in petioles from the diseased site, suggesting that both fungi have similar suppressive effects on fungal richness in petiole/rachis segments they have secured for completion of their life cycle. However, the ability of H. fraxineus to secure the entire leaf nerve system in diseased forests, in opposite to H. albidus, impacts the general diversity and successional trajectory of fungi in decomposing ash petioles.

3.
Front Microbiol ; 13: 892051, 2022.
Article in English | MEDLINE | ID: mdl-35711744

ABSTRACT

The populations of European ash and its harmless fungal associate Hymenoscyphus albidus are in decline owing to ash dieback caused by the invasive Hymenoscyphus fraxineus, a fungus that in its native range in Asia is a harmless leaf endophyte of local ash species. To clarify the behavior of H. albidus and its spatial and temporal niche overlap with the invasive relative, we used light microscopy, fungal species-specific qPCR assays, and PacBio long-read amplicon sequencing of the ITS1-5.8S-ITS2 region to examine fungal growth and species composition in attached leaves of European ash. The plant material was collected from a healthy stand in central Norway, where ash saplings in late autumn showed leaflet vein necrosis like that commonly related to H. fraxineus. For reference, leaflet samples were analyzed from stands with epidemic level of ash dieback in southeastern Norway and Estonia. While H. albidus was predominant in the necrotic veins in the healthy stand, H. fraxineus was predominant in the diseased stands. Otherwise, endophytes with pathogenic potential in the genera Venturia (anamorph Fusicladium), Mycosphaerella (anamorph Ramularia), and Phoma, and basidiomycetous yeasts formed the core leaflet mycobiome both in the healthy and diseased stands. In necrotic leaf areas with high levels of either H. albidus or H. fraxineus DNA, one common feature was the high colonization of sclerenchyma and phloem, a region from which the ascomata of both species arise. Our data suggest that H. albidus can induce necrosis in ash leaves, but that owing to low infection pressure, this first takes place in tissues weakened by autumn senescence, 1-2 months later in the season than what is characteristic of H. fraxineus at an epidemic phase of ash dieback. The most striking difference between these fungi would appear to be the high fecundity of H. fraxineus. The adaptation to a host that is phylogenetically closely related to European ash, a tree species with high occurrence frequency in Europe, and the presence of environmental conditions favorable to H. fraxineus life cycle completion in most years may enable the build-up of high infection pressure and challenge of leaf defense prior to autumn senescence.

4.
Plants (Basel) ; 11(6)2022 Mar 09.
Article in English | MEDLINE | ID: mdl-35336612

ABSTRACT

European beech (Fagus sylvatica L.) forests provide multiple essential ecosystem goods and services. The projected climatic conditions for the current century will significantly affect the vitality of European beech. The expected impact of climate change on forest ecosystems will be potentially stronger in southeast Europe than on the rest of the continent. Therefore, our aim was to use the long-term monitoring data of crown vitality indicators in Croatia to identify long-term trends, and to investigate the influence of current and previous year climate conditions and available site factors using defoliation (DEF) and defoliation change (ΔDEF) as response variables. The results reveal an increasing trend of DEF during the study period from 1996 to 2017. In contrast, no significant trend in annual ΔDEF was observed. The applied linear mixed effects models indicate a very strong influence of previous year drought on ΔDEF, while climate conditions have a weak or insignificant effect on DEF. The results suggest that site factors explain 25 to 30% DEF variance, while similar values of conditional and marginal R2 show a uniform influence of drought on ΔDEF. These results suggest that DEF represents the accumulated impact of location-specific stressful environmental conditions on tree vitality, while ΔDEF reflects intense stress and represents the current or recent status of tree vitality that could be more appropriate for analysing the effect of climate conditions on forest trees.

5.
Sci Rep ; 12(1): 4764, 2022 03 19.
Article in English | MEDLINE | ID: mdl-35306516

ABSTRACT

European ash (Fraxinus excelsior) and narrow-leafed ash (F. angustifolia) are keystone forest tree species with a broad ecological amplitude and significant economic importance. Besides global warming both species are currently under significant threat by an invasive fungal pathogen that has been spreading progressively throughout the continent for almost three decades. Ash dieback caused by the ascomycete Hymenoscyphus fraxineus is capable of damaging ash trees of all age classes and often ultimately leads to the death of a tree after years of progressively developing crown defoliation. While studies at national and regional level already suggested rapid decline of ash populations as a result of ash dieback, a comprehensive survey at European level with harmonized crown assessment data across countries could shed more light into the population decline from a pan-European perspective and could also pave the way for a new conservation strategy beyond national boarders. Here we present data from the ICP Forests Level I crown condition monitoring from 27 countries resulting in > 36,000 observations. We found a substantial increase in defoliation and mortality over time indicating that crown defoliation has almost doubled during the last three decades. Hotspots of mortality are currently situated in southern Scandinavia and north-eastern Europe. Overall survival probability after nearly 30 years of infection has already reached a critical value of 0.51, but with large differences among regions (0.20-0.86). Both a Cox proportional hazard model as well as an Aalen additive regression model strongly suggest that survival of ash is significantly lower in locations with excessive water regime and which experienced more extreme precipitation events during the last two decades. Our results underpin the necessity for fast governmental action and joint rescue efforts beyond national borders since overall mean defoliation will likely reach 50% as early as 2030 as suggested by time series forecasting.


Subject(s)
Fraxinus , Animals , Europe, Eastern , Forests , Fraxinus/microbiology , Plant Diseases/microbiology , Scandinavian and Nordic Countries
6.
Int J Biometeorol ; 66(3): 493-506, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34761333

ABSTRACT

The ascomycete Hymenoscyphus fraxineus has spread across most of the host range of European ash with a high level of mortality, causing important economic, cultural and environmental effects. We present a novel method combining a Monte-Carlo approach with a generalised additive model that confirms the importance of meteorology to the magnitude and timing of H. fraxineus spore emissions. The variability in model selection and the relative degree to which our models are over- or under-fitting the data has been quantified. We find that both the daily magnitude and timing of spore emissions are affected by meteorology during and prior to the spore emission diurnal peak. We found the daily emission magnitude has the strongest associations to weekly average net radiation and leaf moisture before the emission, soil temperature during the day before emission and net radiation during the spore emission. The timing of the daily peak in spore emissions has the strongest associations to net radiation both during spore emission and in the day preceding the emission. The seasonal peak in spore emissions has a near-exponential increase/decrease, and the mean daily emission peak is approximately Gaussian.


Subject(s)
Ascomycota , Fraxinus , Meteorological Concepts , Spores, Fungal , Ascomycota/physiology , Fraxinus/microbiology
7.
Plants (Basel) ; 12(1)2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36616297

ABSTRACT

Despite being adapted to a wide range of environmental conditions, the vitality of European beech is expected to be significantly affected by the projected effects of climate change, which we attempted to assess with foliar nutrition and crown defoliation, as two different, yet interlinked vitality indicators. Based on 28 beech plots of the ICP Forests Level I network, we set out to investigate the nutritional status of beech in Croatia, the relation of its defoliation and nutrient status, and the effects of environmental factors on this relation. The results indicate a generally satisfactory nutrition of common beech in Croatia. Links between defoliation and nutrition of beech are not very direct or very prominent; differences were observed only in some years and on limited number of plots. However, the applied multinomial logistic regression models show that environmental factors affect the relationship between defoliation and nutrition, as climate and altitude influence the occurrence of differences in foliar nutrition between defoliation categories.

8.
J Fungi (Basel) ; 6(3)2020 Aug 26.
Article in English | MEDLINE | ID: mdl-32858843

ABSTRACT

European ash (Fraxinus excelsior) is threatened by the invasive ascomycete Hymenoscyphus fraxineus originating from Asia. Ash leaf tissues serve as a route for shoot infection but also as a sporulation substrate for this pathogen. Knowledge of the leaf niche partitioning by indigenous fungi and H. fraxineus is needed to understand the fungal community receptiveness to the invasion. We subjected DNA extracted from unwashed and washed leaflets of healthy and diseased European ash to PacBio sequencing of the fungal ITS1-5.8S-ITS2 rDNA region. Leaflets from co-inhabiting rowan trees (Sorbus aucuparia) served as a reference. The overlap in leaflet mycobiomes between ash and rowan was remarkably high, but unlike in rowan, in ash leaflets the sequence read proportion, and the qPCR-based DNA amount estimates of H. fraxineus increased vigorously towards autumn, concomitant with a significant decline in overall fungal richness. The niche of ash and rowan leaves was dominated by epiphytic propagules (Vishniacozyma yeasts, the dimorphic fungus Aureobasidion pullulans and the dematiaceous hyphomycete Cladosporium ramotenellum and H. fraxineus), and endophytic thalli of biotrophs (Phyllactinia and Taphrina species), the indigenous necrotroph Venturia fraxini and H. fraxineus. Mycobiome comparison between healthy and symptomatic European ash leaflets revealed no significant differences in relative abundance of H. fraxineus, but A. pullulans was more prevalent in symptomatic trees. The impacts of host specificity, spatiotemporal niche partitioning, species carbon utilization profiles and life cycle traits are discussed to understand the ecological success of H. fraxineus in Europe. Further, the inherent limitations of different experimental approaches in the profiling of foliicolous fungi are addressed.

9.
Sci Rep ; 10(1): 5310, 2020 03 24.
Article in English | MEDLINE | ID: mdl-32210276

ABSTRACT

Determining the impacts of invasive pathogens on tree mortality and growth is a difficult task, in particular in the case of species occurring naturally at low frequencies in mixed stands. In this study, we quantify such effects by comparing national forest inventory data collected before and after pathogen invasion. In Norway, Fraxinus excelsior is a minor species representing less than 1% of the trees in the forests and being attacked by the invasive pathogen Hymenoscyphus fraxineus since 2006. By studying deviations between inventories, we estimated a 74% higher-than-expected average ash mortality and a 13% slower-than-expected growth of the surviving ash trees, indicating a lack of compensation by the remaining ash. We could confidently assign mortality and growth losses to ash dieback as no mortality or growth shifts were observed for co-occurring tree species in the same plots. The mortality comparisons also show regional patterns with higher mortality in areas with the longest disease history in Norway. Considering that ash is currently mostly growing in mixed forests and that no signs of compensation were observed by the surviving ash trees, a significant habitat loss and niche replacement could be anticipated in the mid-term.


Subject(s)
Ascomycota/pathogenicity , Fraxinus/growth & development , Plant Diseases/microbiology , Trees/growth & development , Virulence , Biodiversity , Fraxinus/microbiology , Trees/microbiology
10.
Front Plant Sci ; 9: 1087, 2018.
Article in English | MEDLINE | ID: mdl-30105041

ABSTRACT

Dieback of European ash, caused by the ascomycete Hymenoscyphus fraxineus originating from Asia, has rapidly spread across Europe, and is threatening this keystone tree at a continental scale. High propagule pressure is characteristic to invasive species. Consistently, the enormous production of windborne ascospores by H. fraxineus in an ash forest with epidemic level of disease obviously facilitates its invasiveness and long distance spread. To understand the rate of build-up of propagule pressure by this pathogen following its local introduction, during 2011-2017 we monitored its sporulation at a newly infested ash stand in south-western Norway characterized with mild winters and cool summers. We also monitored the propagule pressure by Hymenoscyphus albidus, a non-pathogenic native species that competes for the same sporulation niche with H. fraxineus. During the monitoring period, crown condition of ash trees had impaired, and 20% of the dominant trees were severely damaged in 2017. H. fraxineus showed an exponential increase in spore production between 2012 and 2015, followed by drastic decline in 2016 and 2017. During 2011-2013, the two Hymenoscyphus species showed similar sporulation level, but thereafter spores of H. albidus were no longer detected. The data suggest that following local introduction, the population of H. fraxineus reaches rapidly an exponential growth stage if the local weather conditions are favorable for ascomata maturation across years. In the North Atlantic climate, summer temperatures critically influence the pathogen infection pressure, warm summers allowing the population to grow according to its biotic potential, whereas cold summers can cause a drastic decline in propagule pressure.

11.
New Phytol ; 213(3): 1405-1417, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27716950

ABSTRACT

High biodiversity is regarded as a barrier against biological invasions. We hypothesized that the invasion success of the pathogenic ascomycete Hymenoscyphus fraxineus threatening common ash in Europe relates to differences in dispersal and colonization success between the invader and the diverse native competitors. Ash leaf mycobiome was monitored by high-throughput sequencing of the fungal internal transcribed spacer region (ITS) and quantitative PCR profiling of H. fraxineus DNA. Initiation of ascospore production by H. fraxineus after overwintering was followed by pathogen accumulation in asymptomatic leaves. The induction of necrotic leaf lesions coincided with escalation of H. fraxineus DNA levels and changes in proportion of biotrophs, followed by an increase of ubiquitous endophytes with pathogenic potential. H. fraxineus uses high propagule pressure to establish in leaves as quiescent thalli that switch to pathogenic mode once these thalli reach a certain threshold - the massive feedback from the saprophytic phase enables this fungus to challenge host defenses and the resident competitors in mid-season when their density in host tissues is still low. Despite the general correspondence between the ITS-1 and ITS-2 datasets, marker biases were observed, which suggests that multiple barcodes provide better overall representation of mycobiomes.


Subject(s)
Ascomycota/physiology , Biodiversity , Fraxinus/microbiology , Introduced Species , Plant Leaves/microbiology , Seasons , Ascomycota/classification , DNA, Intergenic , Principal Component Analysis
12.
Glob Chang Biol ; 21(1): 418-30, 2015 Jan.
Article in English | MEDLINE | ID: mdl-24920268

ABSTRACT

The response of forest ecosystems to increased atmospheric CO2 is constrained by nutrient availability. It is thus crucial to account for nutrient limitation when studying the forest response to climate change. The objectives of this study were to describe the nutritional status of the main European tree species, to identify growth-limiting nutrients and to assess changes in tree nutrition during the past two decades. We analysed the foliar nutrition data collected during 1992-2009 on the intensive forest monitoring plots of the ICP Forests programme. Of the 22 significant temporal trends that were observed in foliar nutrient concentrations, 20 were decreasing and two were increasing. Some of these trends were alarming, among which the foliar P concentration in F. sylvatica, Q. Petraea and P. sylvestris that significantly deteriorated during 1992-2009. In Q. Petraea and P. sylvestris, the decrease in foliar P concentration was more pronounced on plots with low foliar P status, meaning that trees with latent P deficiency could become deficient in the near future. Increased tree productivity, possibly resulting from high N deposition and from the global increase in atmospheric CO2, has led to higher nutrient demand by trees. As the soil nutrient supply was not always sufficient to meet the demands of faster growing trees, this could partly explain the deterioration of tree mineral nutrition. The results suggest that when evaluating forest carbon storage capacity and when planning to reduce CO2 emissions by increasing use of wood biomass for bioenergy, it is crucial that nutrient limitations for forest growth are considered.


Subject(s)
Climate Change , Nutrition Assessment , Trees/chemistry , Trees/growth & development , Europe , Models, Biological , Plant Leaves/chemistry , Soil/chemistry , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...