Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Nature ; 620(7973): 393-401, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37407818

ABSTRACT

Acquired drug resistance to anticancer targeted therapies remains an unsolved clinical problem. Although many drivers of acquired drug resistance have been identified1-4, the underlying molecular mechanisms shaping tumour evolution during treatment are incompletely understood. Genomic profiling of patient tumours has implicated apolipoprotein B messenger RNA editing catalytic polypeptide-like (APOBEC) cytidine deaminases in tumour evolution; however, their role during therapy and the development of acquired drug resistance is undefined. Here we report that lung cancer targeted therapies commonly used in the clinic can induce cytidine deaminase APOBEC3A (A3A), leading to sustained mutagenesis in drug-tolerant cancer cells persisting during therapy. Therapy-induced A3A promotes the formation of double-strand DNA breaks, increasing genomic instability in drug-tolerant persisters. Deletion of A3A reduces APOBEC mutations and structural variations in persister cells and delays the development of drug resistance. APOBEC mutational signatures are enriched in tumours from patients with lung cancer who progressed after extended responses to targeted therapies. This study shows that induction of A3A in response to targeted therapies drives evolution of drug-tolerant persister cells, suggesting that suppression of A3A expression or activity may represent a potential therapeutic strategy in the prevention or delay of acquired resistance to lung cancer targeted therapy.


Subject(s)
Cytidine Deaminase , Lung Neoplasms , Humans , Cytidine Deaminase/deficiency , Cytidine Deaminase/drug effects , Cytidine Deaminase/genetics , Cytidine Deaminase/metabolism , DNA Breaks, Double-Stranded , Genomic Instability , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Molecular Targeted Therapy , Mutation , Drug Resistance, Neoplasm
2.
Comput Struct Biotechnol J ; 19: 1302-1311, 2021.
Article in English | MEDLINE | ID: mdl-33738079

ABSTRACT

Local 3D-structural differences in homologous proteins contribute to functional diversity observed in a superfamily, but so far received little attention as bioinformatic analysis was usually carried out at the level of amino acid sequences. We have developed Zebra3D - the first-of-its-kind bioinformatic software for systematic analysis of 3D-alignments of protein families using machine learning. The new tool identifies subfamily-specific regions (SSRs) - patterns of local 3D-structure (i.e. single residues, loops, or secondary structure fragments) that are spatially equivalent within families/subfamilies, but are different among them, and thus can be associated with functional diversity and function-related conformational plasticity. Bioinformatic analysis of protein superfamilies by Zebra3D can be used to study 3D-determinants of catalytic activity and specific accommodation of ligands, help to prepare focused libraries for directed evolution or assist development of chimeric enzymes with novel properties by exchange of equivalent regions between homologs, and to characterize plasticity in binding sites. A companion Mustguseal web-server is available to automatically construct a 3D-alignment of functionally diverse proteins, thus reducing the minimal input required to operate Zebra3D to a single PDB code. The Zebra3D + Mustguseal combined approach provides the opportunity to systematically explore the value of SSRs in superfamilies and to use this information for protein design and drug discovery. The software is available open-access at https://biokinet.belozersky.msu.ru/Zebra3D.

3.
Cancer Discov ; 10(1): 72-85, 2020 01.
Article in English | MEDLINE | ID: mdl-31594766

ABSTRACT

The combination of CDK4/6 inhibitors with antiestrogen therapies significantly improves clinical outcomes in ER-positive advanced breast cancer. To identify mechanisms of acquired resistance, we analyzed serial biopsies and rapid autopsies from patients treated with the combination of the CDK4/6 inhibitor ribociclib with letrozole. This study revealed that some resistant tumors acquired RB loss, whereas other tumors lost PTEN expression at the time of progression. In breast cancer cells, ablation of PTEN, through increased AKT activation, was sufficient to promote resistance to CDK4/6 inhibition in vitro and in vivo. Mechanistically, PTEN loss resulted in exclusion of p27 from the nucleus, leading to increased activation of both CDK4 and CDK2. Because PTEN loss also causes resistance to PI3Kα inhibitors, currently approved in the post-CDK4/6 setting, these findings provide critical insight into how this single genetic event may cause clinical cross-resistance to multiple targeted therapies in the same patient, with implications for optimal treatment-sequencing strategies. SIGNIFICANCE: Our analysis of serial biopsies uncovered RB and PTEN loss as mechanisms of acquired resistance to CDK4/6 inhibitors, utilized as first-line treatment for ER-positive advanced breast cancer. Importantly, these findings have near-term clinical relevance because PTEN loss also limits the efficacy of PI3Kα inhibitors currently approved in the post-CDK4/6 setting.This article is highlighted in the In This Issue feature, p. 1.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Breast Neoplasms/drug therapy , Class I Phosphatidylinositol 3-Kinases/antagonists & inhibitors , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Drug Resistance, Neoplasm , PTEN Phosphohydrolase/deficiency , Aged , Aminopyridines/administration & dosage , Animals , Apoptosis , Biomarkers, Tumor , Breast Neoplasms/enzymology , Breast Neoplasms/pathology , Cell Proliferation , Clinical Trials, Phase I as Topic , Cross-Sectional Studies , Female , Gene Expression Regulation, Neoplastic , Humans , Letrozole/administration & dosage , Mice , Mice, Nude , Middle Aged , PTEN Phosphohydrolase/genetics , Prognosis , Purines/administration & dosage , Receptors, Estrogen/metabolism , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
4.
Oncogene ; 38(37): 6399-6413, 2019 09.
Article in English | MEDLINE | ID: mdl-31324888

ABSTRACT

Evolved resistance to tyrosine kinase inhibitor (TKI)-targeted therapies remains a major clinical challenge. In epidermal growth factor receptor (EGFR) mutant non-small-cell lung cancer (NSCLC), failure of EGFR TKIs can result from both genetic and epigenetic mechanisms of acquired drug resistance. Widespread reports of histologic and gene expression changes consistent with an epithelial-to-mesenchymal transition (EMT) have been associated with initially surviving drug-tolerant persister cells, which can seed bona fide genetic mechanisms of resistance to EGFR TKIs. While therapeutic approaches targeting fully resistant cells, such as those harboring an EGFRT790M mutation, have been developed, a clinical strategy for preventing the emergence of persister cells remains elusive. Using mesenchymal cell lines derived from biopsies of patients who progressed on EGFR TKI as surrogates for persister populations, we performed whole-genome CRISPR screening and identified fibroblast growth factor receptor 1 (FGFR1) as the top target promoting survival of mesenchymal EGFR mutant cancers. Although numerous previous reports of FGFR signaling contributing to EGFR TKI resistance in vitro exist, the data have not yet been sufficiently compelling to instigate a clinical trial testing this hypothesis, nor has the role of FGFR in promoting the survival of persister cells been elucidated. In this study, we find that combining EGFR and FGFR inhibitors inhibited the survival and expansion of EGFR mutant drug-tolerant cells over long time periods, preventing the development of fully resistant cancers in multiple vitro models and in vivo. These results suggest that dual EGFR and FGFR blockade may be a promising clinical strategy for both preventing and overcoming EMT-associated acquired drug resistance and provide motivation for the clinical study of combined EGFR and FGFR inhibition in EGFR-mutated NSCLCs.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Drug Resistance, Neoplasm/drug effects , Epithelial-Mesenchymal Transition/drug effects , Lung Neoplasms , Protein Kinase Inhibitors/therapeutic use , Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors , Animals , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Proliferation/drug effects , Cell Proliferation/genetics , Drug Resistance, Neoplasm/genetics , Epithelial-Mesenchymal Transition/genetics , ErbB Receptors/genetics , ErbB Receptors/physiology , Female , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice , Mice, Nude , Molecular Targeted Therapy , Mutation , Protein Kinase Inhibitors/pharmacology , RNA, Small Interfering/pharmacology , Receptor, Fibroblast Growth Factor, Type 1/genetics , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
5.
Nucleic Acids Res ; 47(W1): W308-W314, 2019 07 02.
Article in English | MEDLINE | ID: mdl-31106356

ABSTRACT

Disulfide bonds play a significant role in protein stability, function or regulation but are poorly conserved among evolutionarily related proteins. The Yosshi can help to understand the role of S-S bonds by comparing sequences and structures of homologs with diverse properties and different disulfide connectivity patterns within a common structural fold of a superfamily, and assist to select the most promising hot-spots to improve stability of proteins/enzymes or modulate their functions by introducing naturally occurring crosslinks. The bioinformatic analysis is supported by the integrated Mustguseal web-server to construct large structure-guided sequence alignments of functionally diverse protein families that can include thousands of proteins based on all available information in public databases. The Yosshi+Mustguseal is a new integrated web-tool for a systematic homology-driven analysis and engineering of S-S bonds that facilitates a broader interpretation of disulfides not just as a factor of structural stability, but rather as a mechanism to implement functional diversity within a superfamily. The results can be downloaded as a content-rich PyMol session file or further studied online using the HTML5-based interactive analysis tools. Both web-servers are free and open to all users at https://biokinet.belozersky.msu.ru/yosshi and there is no login requirement.


Subject(s)
Algorithms , Computational Biology/methods , Disulfides/chemistry , Proteins/chemistry , Software , Amino Acid Sequence , Internet , Models, Molecular , Protein Engineering , Sequence Alignment
6.
Clin Cancer Res ; 25(2): 796-807, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30327306

ABSTRACT

PURPOSE: KRAS-mutant lung cancers have been recalcitrant to treatments including those targeting the MAPK pathway. Covalent inhibitors of KRAS p.G12C allele allow for direct and specific inhibition of mutant KRAS in cancer cells. However, as for other targeted therapies, the therapeutic potential of these inhibitors can be impaired by intrinsic resistance mechanisms. Therefore, combination strategies are likely needed to improve efficacy.Experimental Design: To identify strategies to maximally leverage direct KRAS inhibition we defined the response of a panel of NSCLC models bearing the KRAS G12C-activating mutation in vitro and in vivo. We used a second-generation KRAS G12C inhibitor, ARS1620 with improved bioavailability over the first generation. We analyzed KRAS downstream effectors signaling to identify mechanisms underlying differential response. To identify candidate combination strategies, we performed a high-throughput drug screening across 112 drugs in combination with ARS1620. We validated the top hits in vitro and in vivo including patient-derived xenograft models. RESULTS: Response to direct KRAS G12C inhibition was heterogeneous across models. Adaptive resistance mechanisms involving reactivation of MAPK pathway and failure to induce PI3K-AKT pathway inactivation were identified as likely resistance events. We identified several model-specific effective combinations as well as a broad-sensitizing effect of PI3K-AKT-mTOR pathway inhibitors. The G12Ci+PI3Ki combination was effective in vitro and in vivo on models resistant to single-agent ARS1620 including patient-derived xenografts models. CONCLUSIONS: Our findings suggest that signaling adaptation can in some instances limit the efficacy of ARS1620 but combination with PI3K inhibitors can overcome this resistance.


Subject(s)
Alleles , Drug Resistance, Neoplasm/genetics , Mutation , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/genetics , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Gene Silencing , Humans , Mice , Proto-Oncogene Proteins p21(ras)/metabolism , Signal Transduction/drug effects
7.
Cancer Discov ; 8(12): 1598-1613, 2018 12.
Article in English | MEDLINE | ID: mdl-30254092

ABSTRACT

BH3 mimetic drugs, which inhibit prosurvival BCL2 family proteins, have limited single-agent activity in solid tumor models. The potential of BH3 mimetics for these cancers may depend on their ability to potentiate the apoptotic response to chemotherapy and targeted therapies. Using a novel class of potent and selective MCL1 inhibitors, we demonstrate that concurrent MEK + MCL1 inhibition induces apoptosis and tumor regression in KRAS-mutant non-small cell lung cancer (NSCLC) models, which respond poorly to MEK inhibition alone. Susceptibility to BH3 mimetics that target either MCL1 or BCL-xL was determined by the differential binding of proapoptotic BCL2 proteins to MCL1 or BCL-xL, respectively. The efficacy of dual MEK + MCL1 blockade was augmented by prior transient exposure to BCL-xL inhibitors, which promotes the binding of proapoptotic BCL2 proteins to MCL1. This suggests a novel strategy for integrating BH3 mimetics that target different BCL2 family proteins for KRAS-mutant NSCLC. SIGNIFICANCE: Defining the molecular basis for MCL1 versus BCL-xL dependency will be essential for effective prioritization of BH3 mimetic combination therapies in the clinic. We discover a novel strategy for integrating BCL-xL and MCL1 inhibitors to drive and subsequently exploit apoptotic dependencies of KRAS-mutant NSCLCs treated with MEK inhibitors.See related commentary by Leber et al., p. 1511.This article is highlighted in the In This Issue feature, p. 1494.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , A549 Cells , Aniline Compounds/administration & dosage , Aniline Compounds/pharmacology , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Benzamides/pharmacology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Diphenylamine/analogs & derivatives , Diphenylamine/pharmacology , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Mice, Knockout , Mice, Nude , Mice, SCID , Mitogen-Activated Protein Kinase Kinases/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Sulfonamides/administration & dosage , Sulfonamides/pharmacology , Tumor Burden/drug effects , Xenograft Model Antitumor Assays/methods
8.
Cancer Discov ; 8(6): 714-729, 2018 06.
Article in English | MEDLINE | ID: mdl-29650534

ABSTRACT

The cornerstone of treatment for advanced ALK-positive lung cancer is sequential therapy with increasingly potent and selective ALK inhibitors. The third-generation ALK inhibitor lorlatinib has demonstrated clinical activity in patients who failed previous ALK inhibitors. To define the spectrum of ALK mutations that confer lorlatinib resistance, we performed accelerated mutagenesis screening of Ba/F3 cells expressing EML4-ALK. Under comparable conditions, N-ethyl-N-nitrosourea (ENU) mutagenesis generated numerous crizotinib-resistant but no lorlatinib-resistant clones harboring single ALK mutations. In similar screens with EML4-ALK containing single ALK resistance mutations, numerous lorlatinib-resistant clones emerged harboring compound ALK mutations. To determine the clinical relevance of these mutations, we analyzed repeat biopsies from lorlatinib-resistant patients. Seven of 20 samples (35%) harbored compound ALK mutations, including two identified in the ENU screen. Whole-exome sequencing in three cases confirmed the stepwise accumulation of ALK mutations during sequential treatment. These results suggest that sequential ALK inhibitors can foster the emergence of compound ALK mutations, identification of which is critical to informing drug design and developing effective therapeutic strategies.Significance: Treatment with sequential first-, second-, and third-generation ALK inhibitors can select for compound ALK mutations that confer high-level resistance to ALK-targeted therapies. A more efficacious long-term strategy may be up-front treatment with a third-generation ALK inhibitor to prevent the emergence of on-target resistance. Cancer Discov; 8(6); 714-29. ©2018 AACR.This article is highlighted in the In This Issue feature, p. 663.


Subject(s)
Anaplastic Lymphoma Kinase/genetics , Drug Resistance, Neoplasm , Lactams, Macrocyclic/administration & dosage , Lung Neoplasms/genetics , Mutation , Aminopyridines , Animals , Cell Line, Tumor , Crizotinib/administration & dosage , Crizotinib/pharmacology , Ethylnitrosourea/adverse effects , Female , Humans , Lactams , Lactams, Macrocyclic/pharmacology , Lung Neoplasms/chemically induced , Lung Neoplasms/drug therapy , Mice , Oncogene Proteins, Fusion/genetics , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/pharmacology , Pyrazoles , Exome Sequencing , Xenograft Model Antitumor Assays
9.
J Bioinform Comput Biol ; 16(2): 1840005, 2018 04.
Article in English | MEDLINE | ID: mdl-29361894

ABSTRACT

The visualCMAT web-server was designed to assist experimental research in the fields of protein/enzyme biochemistry, protein engineering, and drug discovery by providing an intuitive and easy-to-use interface to the analysis of correlated mutations/co-evolving residues. Sequence and structural information describing homologous proteins are used to predict correlated substitutions by the Mutual information-based CMAT approach, classify them into spatially close co-evolving pairs, which either form a direct physical contact or interact with the same ligand (e.g. a substrate or a crystallographic water molecule), and long-range correlations, annotate and rank binding sites on the protein surface by the presence of statistically significant co-evolving positions. The results of the visualCMAT are organized for a convenient visual analysis and can be downloaded to a local computer as a content-rich all-in-one PyMol session file with multiple layers of annotation corresponding to bioinformatic, statistical and structural analyses of the predicted co-evolution, or further studied online using the built-in interactive analysis tools. The online interactivity is implemented in HTML5 and therefore neither plugins nor Java are required. The visualCMAT web-server is integrated with the Mustguseal web-server capable of constructing large structure-guided sequence alignments of protein families and superfamilies using all available information about their structures and sequences in public databases. The visualCMAT web-server can be used to understand the relationship between structure and function in proteins, implemented at selecting hotspots and compensatory mutations for rational design and directed evolution experiments to produce novel enzymes with improved properties, and employed at studying the mechanism of selective ligand's binding and allosteric communication between topologically independent sites in protein structures. The web-server is freely available at https://biokinet.belozersky.msu.ru/visualcmat and there are no login requirements.


Subject(s)
Computational Biology/methods , Internet , Mutation , Proteins/genetics , Software , Algorithms , Binding Sites , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Evolution, Molecular , Models, Molecular , Protein Conformation , Proteins/chemistry , Proteins/metabolism , Receptors, Cell Surface/chemistry , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Sequence Alignment , User-Computer Interface
10.
J Am Chem Soc ; 138(8): 2563-70, 2016 Mar 02.
Article in English | MEDLINE | ID: mdl-26841249

ABSTRACT

The abnormal overexpression of the BCL2 gene is associated with many human tumors. We found a new 28-mer G-quadruplex-forming sequence, P1G4, immediately upstream of the human BCL2 gene P1 promoter. The P1G4 is shown to be a transcription repressor using a promoter-driven luciferase assay; its inhibitory effect can be markedly enhanced by the G-quadruplex-interactive compound TMPyP4. G-quadruplex can readily form in the P1G4 sequence under physiological salt condition as shown by DMS footprinting. P1G4 and previously identified Pu39 G-quadruplexes appear to form independently in adjacent regions in the BCL2 P1 promoter. In the extended BCL2 P1 promoter region containing both Pu39 and P1G4, P1G4 appears to play a more dominant role in repressing the transcriptional activity. Using NMR spectroscopy, the P1G4 G-quadruplex appears to be a novel dynamic equilibrium of two parallel structures, one regular with two 1-nt loops and a 12-nt middle loop and another broken-strand with three 1-nt loops and a 11-nt middle loop; both structures adopt a novel hairpin (stem-loop duplex) conformation in the long loop. The dynamic equilibrium of two closely related structures and the unique hairpin loop conformation are specific to the P1G4 sequence and distinguish the P1G4 quadruplex from other parallel structures. The presence of P1G4 and Pu39 in adjacent regions of the BCL2 P1 promoter suggests a mechanism for precise regulation of BCL2 gene transcription. The unique P1G4 G-quadruplex may provide a specific target for small molecules to modulate BCL2 gene transcription.


Subject(s)
G-Quadruplexes , Proto-Oncogene Proteins c-bcl-2/genetics , Transcription, Genetic , Base Sequence , Genes, Regulator , Humans , MCF-7 Cells , Molecular Sequence Data , Promoter Regions, Genetic , Proto-Oncogene Proteins c-bcl-2/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...